Page 187 - HIVMED_v21_i1.indb
P. 187

Page 6 of 6  Review Article


              23. Spivak  AM,  Andrade  A,  Eisele  E,  et  al.  A  pilot  study  assessing  the  safety  and   42. López-Huertas MR, Mateos E, Sánchez del Cojo M et al. The presence of HIV-1 Tat
                latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral   protein second exon delays fas protein-mediated apoptosis in CD4+ T lymphocytes:
                therapy. Clin Infect Dis. 2014;58(6):883–890. https://doi.org/10.1093/cid/cit813  A potential mechanism for persistent viral production. J Biol Chem. 2013;288:
              24. Elliott JH, McMahon J, Chang C, et al. Short-term administration of disulfiram for   7626–7644. https://doi.org/10.1074/jbc.M112.408294
                reversal  of  latent  HIV  infection:  A  phase  2  dose-escalation  study.  Lancet  HIV.   43. Llambi F, Moldoveanu T, Tait S, et al. A unified model of mammalian BCL-2 protein
                2015;2(12):e520–529. https://doi.org/10.1016/S2352-3018(15)00226-X  family interactions at the mitochondria. Mol Cell. 2011;44(4):517–531. https://
              25. Archin NM, Liberty A, Kashuba A et al. Administration of vorinostat disrupts HIV-1   doi.org/10.1016/j.molcel.2011.10.001
                latency in patients on antiretroviral therapy. Nature. 2012;487:482–485. https://  44. Wolf D, Witte V, Laffert B, et al. HIV-1 Nef associated PAK and PI3-kinases stimulate
                doi.org/10.1038/nature11286                           Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med.
              26. Rasmussen TA, Tolstrup M, Brinkmann C, et al. Panobinostat, a histone deacetylase   2001;7:1217–1224. https://doi.org/10.1038/nm1101-1217
                inhibitor,  for  latent-virus  reactivation  in  HIV-infected  patients  on  suppressive   45. Wu X, Dong H, Ye X, et al. HIV-1 Tat increases BAG3 via NF-κB signaling to induce
                antiretroviral  therapy:  A  phase  1/2,  single  group,  clinical  trial.  Lancet  HIV.   autophagy  during  HIV-associated  neurocognitive  disorder.  Cell  Cycle.
                2014;1(1):e13–e21. https://doi.org/10.1016/S2352-3018(14)70014-1  2018;13:1614–1623. https://doi.org/10.1080/15384101.2018.1480219
              27. Shan L, Deng K, Shroff N, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes   46. Dong H, Ye X, Zhong L, et al. Role of FOXO3 activated by HIV-1 tat in HIV-associated
                facilitates elimination of latent viral reservoir after virus reactivation. Immunity.   neurocognitive disorder neuronal apoptosis. Front Neurosci. 2019;4:44. https://
                2012;36(3):491–501. https://doi.org/10.1016/j.immuni.2012.01.014  doi.org/10.3389/fnins.2019.00044
              28. Deng K, Pertea M, Rongvaux A, et al. Broad CTL response is required to clear latent   47. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular
                HIV-1 due to dominance of escape mutations. Nature. 2015;517:381–385. https://  targeting  therapy  in  cancer.  Biomed  Res  Int.  2014;150845:23.  https://doi.
                doi.org/10.1038/nature14053                           org/10.1155/2014/150845
              29. Chew GM, Fujita T, Webb G, et al. TIGIT marks exhausted T cells, correlates with   48. Fulda  S.  Smac  mimetics  to  therapeutically  target  IAP  proteins  in  cancer.  Int
                disease progression, and serves as a target for immune restoration in HIV and SIV   Rev Cell Mol Biol. 2017;330:157–169. https://doi.org/10.1016/bs.ircmb.2016.
                infection.  PLoS  Pathog.  2016;12:e1005349.  https://doi.org/10.1371/journal.  09.004
                ppat.1005349
                                                                    49. Gao  Z,  Tian  Y,  Wang  J,  et  al.  A  dimeric  Smac/diablo  peptide  directly  relieves
              30. Thorlund  K,  Horwitz  MS,  Fife  BT,  Lester  R,  Cameron  DW.  Landscape  review  of   caspase-3  inhibition  by  XIAP.  Dynamic  and  cooperative  regulation  of  XIAP  by
                current HIV ‘kick and kill’ cure research – Some kicking, not enough killing. BMC   Smac/Diablo. J Biol Chem. 2007;282:30718–30727. https://doi.org/10.1074/jbc.
                Infect Dis. 2017;17:595. https://doi.org/10.1186/s12879-017-2683-3  M705258200
              31. Letendre S, Marquie-Beck J, Capparelli E, et al. Validation of the CNS penetration-  50. Bertrand MJ, Milutinovic S, Dickson K, et al. cIAP1 and cIAP2 facilitate cancer cell
                effectiveness  rank  for  quantifying  antiretroviral  penetration  into  the  central   survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell.
                nervous  system.  Arch  Neurol.  2008;65(1):65–70.  https://doi.org/10.1001/  2008;30(6):689–700. https://doi.org/10.1016/j.molcel.2008.05.014
                archneurol.2007.31
              32. Putatunda L, Ho WZ, Hu W. HIV-1 and compromised adult neurogenesis: Emerging   51. Campbell GR, Bruckman RS, ChuYL, Trout RN, Spector SA. SMAC mimetics induce
                                                                      autophagy-dependent apoptosis of HIV-1-infected resting memory CD4+ T cells.
                evidence  for  a  new  paradigm  of  HAND  persistence.  AIDS  Rev.  2019;21:11–22.   Cell  Host  Microbe.  2018;24(5):689–702.  https://doi.org/10.1016/j.chom.2018.
                https://doi.org/10.24875/AIDSRev.19000003             09.007
              33. Churchill MJ, Cowley DJ, Wesselingh SL, Gorry PR, Gray LR. HIV-1 transcriptional   52. Pache L, Dutra MS, Spivak AM, et al. BIRC2/cIAP1 is a negative regulator of HIV-1
                regulation in the central nervous system and implications for HIV cure research. J   transcription and can be targeted by smac mimetics to promote reversal of viral
                Neurovirol. 2015;21:290–300. https://doi.org/10.1007/s13365-014-0271-5  latency.  Cell  Host  Microbe.  2015;18(3):345–353.  https://doi.org/10.1016/j.
              34. Yang HC, Xing S, Shan L, et al. Small-molecule screening using a human primary   chom.2015.08.009
                cell  model  of  HIV  latency  identifies  compounds  that  reverse  latency  without   53. Kyei  GB,  Dinkins  C,  Davis  AS,  et  al.  Autophagy  pathway  intersects  with  HIV-1
                cellular activation. J Clin Invest. 2009;119:3473–3486. https://doi.org/10.1172/  biosynthesis and regulates viral yields in macrophages. J Cell Biol. 2009;186(2):255–
                JCI39199                                              268. https://doi.org/10.1083/jcb.200903070
              35. Garrido  C,  Abad-Fernandez  M,  Tuyishime  M,  et  al.  Interleukin-15-stimulated   54. Borel S, Robert-Hebmann V, Alfaisal J, et al. HIV-1 viral infectivity factor interacts
                natural killer cells clear HIV-1-infected cells following latency reversal ex vivo. J   with microtubule-associated protein light chain 3 and inhibits autophagy. AIDS.
                Virol. 2018;92(12):e00235–18. https://doi.org/10.1128/JVI.00235-18  2015;29(3):275–286. https://doi.org/10.1097/QAD.0000000000000554
              36. Halper-Stromberg A, Lu C, Klein F, et al. Broadly neutralizing antibodies and viral   55. Boddu P, Carter BZ, Verstovek S, Pemmaraju N. SMAC mimetics as potential cancer
                inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell.   therapeutics  in  myeloid  malignancies.  Br  J  Haematol.  2019;185(2):219–231.
                2014;158(5):989–999. https://doi.org/10.1016/j.cell.2014.07.043  https://doi.org/10.1111/bjh.15829
              37. Kim Y, Anderson JL, Lewin SR. Getting the ‘Kill’ into ‘Shock and Kill’: Strategies to   56. Cummins NW, Sainski AM, Dai H, et al. Prime, shock, and kill: Priming CD4 T
                eliminate  latent  HIV.  Cell  Host  Microbe.  2018;23(1):14–26.  https://doi.
                org/10.1016/j.chom.2017.12.004                        cells from HIV patients with a BCL-2 antagonist before HIV reactivation reduces
                                                                      HIV  reservoir  size.  J  Virol.  2016;90:4032–4048.  https://doi.org/10.1128/JVI.
              38. Procopio FA, Fromentin R, Kulpa D, et al. A novel assay to measure the magnitude   03179-15
                of  the  inducible  viral  reservoir  in  HIV-infected  individuals.  EBioMedicine.
                2015;2(8):874–883. https://doi.org/10.1016/j.ebiom.2015.06.019  57. Lucas A, Kim Y, Rivera-Pabon O, et al. Targeting the PI3K/Akt cell survival pathway
                                                                      to  induce  cell  death  of  HIV-1  infected  macrophages  with  alkylphospholipid
              39. Heaton RK, Clifford DB, Franklin DR, et al. HIV-associated neurocognitive disorders   compounds. PLoS One. 2010;5(9):e13121. https://doi.org/10.1371/journal.pone.
                persist  in  the  era  of  potent  antiretroviral  therapy:  CHARTER  study.  Neurology.   0013121
                2010;75(23):2087–2096. https://doi.org/10.1212/WNL.0b013e318200d727  58. Kim Y, Hollenbaugh JA, Kim DH, Kim B. Novel PI3K/Akt inhibitors screened by the
              40. Timilsina U, Gaur R. Modulation of apoptosis and viral latency – An axis to be well   cytoprotective function of human immunodeficiency virus type 1 Tat. PLoS One.
                understood for successful cure of human immunodeficiency virus. J Gen Virol.   2011;6(7):e21781. https://doi.org/10.1371/journal.pone.0021781
                2016;97(4):813–824. https://doi.org/10.1099/jgv.0.000402  59. Li P, Kaiser P, Lampiris HW, et al. Stimulating the RIG-I pathway to kill cells in the
              41. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7.   latent  HIV  reservoir  following  viral  reactivation.  Nat  Med.  2016;22:807–811.
                https://doi.org/10.1101/cshperspect.a006080           https://doi.org/10.1038/nm.4124
























                                           http://www.sajhivmed.org.za 179  Open Access
   182   183   184   185   186   187   188   189   190   191   192