Challenges for paediatric ARVs development
What’s in the pipeline?

Marc Lallemand
Antiretroviral drug discovery

- 1981: AIDS
- 1983: HIV
- 1985: tests
- Virus
 - Drug targets

- 1987 – today: 25 years of incessant antiretroviral drug discovery
The number of approved drugs decreases with children’s age

Polly Clayden

2012 Pipeline report I-BASE & TAG
<table>
<thead>
<tr>
<th>Drug</th>
<th>Calendar years</th>
<th>Time in years between adult approval and PD</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didanosine</td>
<td>1991–2001</td>
<td>9.9</td>
<td>Bristol-Myers Squibb</td>
</tr>
<tr>
<td>Lamivudine</td>
<td>1995–2001</td>
<td>5.7</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>1995–2010</td>
<td>14.9</td>
<td>Roche</td>
</tr>
<tr>
<td>Stavudine</td>
<td>1995–2001</td>
<td>5.7</td>
<td>Bristol-Myers Squibb</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>1996–2001</td>
<td>5.5</td>
<td>Boehringer Ingelheim</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>1997–2003</td>
<td>6.5</td>
<td>Agouron</td>
</tr>
<tr>
<td>Abacavir</td>
<td>1998</td>
<td><1</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td>2000–2007</td>
<td>7.5</td>
<td>Abbott</td>
</tr>
<tr>
<td>Emtricitabine</td>
<td>2003–2005</td>
<td>2.9</td>
<td>Gilead</td>
</tr>
<tr>
<td>Tipranavir</td>
<td>2005–2007</td>
<td>2.7</td>
<td>Boehringer Ingelheim</td>
</tr>
</tbody>
</table>

P. Clayden
2011 Pipeline report I-BASE & TAG.
Pediatric Planning in the Drug Development Process Timing

US

- Preclinical testing
- Phase 1: Peds plans discussed-maybe
- Phase 2: Written Request (BPCA) maybe issued
- Phase 3: PREA requirements agreed before approval (pediatric plan)
- PIP process begins
- Adult PK
- PIP modifications
- Pre-NDA/BLA
- Submission & Review
- Marketing Approval
- PMR
- Post Marketing Requirements
- Approved PIP required for MAA submission

EU

AAADV Workshop May 2011
Pediatric indications in 2011-2012

- **Darunavir** (DRV) oral suspension formulations for children ages 3–<5 and >6 years unable to swallow tablets
- **Raltegravir** (RAL) chewable tablets for children 2–18 years old;
- **Tenofovir** (TDF) oral powder and tablets of for children 2–<18 years old
- **Etravirine** (ETR) tablets for 6–18 years old;
- **Fosamprenavir** (FOS) oral suspension for children 4 weeks to <6 years old.
Staggered age de-escalation studies

- **ATV** powder & capsules +/- RTV 3 months to 6 years of age (PRINCE1 and 2 and IMPAACT P1020A)
- **EVG/COBI** reduced-strength tablets and suspension in all age groups (PIP)
- **EVG/COBI/TDF/FTC** reduced strength tabs 6–18 years (PIP)
- **ETR** dispersible tablets 2 months to 6 years (P1090)
- **MVC** CCR5 antagonist oral suspension 2–8y (A4001031)
- **RAL** granules for suspension 6 mg/kg for less than 2 (P1066 & P1097)
- **RIL** 25 mg once daily 12 to 18 y, more than 32 kg (PAINT), and granules 0–12 years (TMC278-C220)
ARV & TB Pipeline highlights (PIPs)

- **tenofovir prodrug** (GS-7340) improved PK and cellular penetration, low doses (10-24 mg/d vs 300 mg/d TDF)
 - GS-7340/FTC/EVG/COB studied
 - GS-7340/FTC/DRV/COB, first PI-based single-tablet FDC

- **Dolutegravir** (DTG), OD in naïve, no boosting, resistance profile distinct from raltegravir? low dose, UGT1A1 (CYP3A minor route) i.e. manageable interactions; pediatric granule formulation (p1093)
 - DTG/ABC/3TC (572-Trii) studied

- **Bedaquiline** (TMC 207) evaluated in DR-TB and DR-TB/HIV co-infected children (p1108)
Caveat 1: Registration ≠ Access

- For 95% of HIV infected children worldwide who live in Africa, Asia and Latin America access, beyond FDA tentative approval, requires:
 - In country regulatory approval
 - Country program adoption (national guidelines)
 - Affordability
 - Efficient supply chain
 - (in addition to timely HIV diagnosis and appropriate monitoring)
Caveat 2: Generic competition, IP & prices

- 100 fold price decrease of 1st line therapy in 6 years
- Will this repeat itself with newer drugs?
 - Widespread patenting in Developing Countries
 - Basic patent expiry date for ETR: 2019; RAL: 2022
- Licenses negotiated from a public health perspective through the Medicine Patent Pool may be a key mechanism
Caveat 3: Generic market fragmentation

- Advocacy to manufacturers has resulted in many formulations of the same drugs
 - Many products (45!) but few options (2 lines!) and still no adapted PI formulation
 - Top 4 (of 45) represent more than 50% of the total market value (UNITAID/CHAI)
- No demand for the WHO prequalified combination (ABC+3TC+ZDV 60/30/60mg tablet)
- Need for consolidated orders to reach manufacturer batch size
 - Up to 9 months delays before order are fulfilled
Caveat 4: Shrinking pediatric HIV population

Projected annual no. of newly infected children and no. receiving early HIV diagnosis and ART during infancy

- Newly infected children
- Diagnosed and access to ART <12mo
Beyond new drugs
Treatment optimisation: WHO Treatment 2.0

- **Re-formulation** (improve drug bioavailability; stability; acceptability; extended release formulations)
- **Co-formulation** (FDCs or co-blister pack)
- **Dose adjustment/reduction** (reduce toxicity & pill burden/size)
- **Sequencing strategies**, induction-maintenance; intensification
 - NEVEREST (LPV->EFV);
 - ARROW (NNRTI+2 or 3 NRTIs-> NNRTI+2NRTIs or 3NRTIs)
- **Drug manufacturing process** (improve synthesis/reduce cost)
- **Management of TB/HIV co-infection** (RIF PI & NNRTI interactions)
 - Additional RTV to reach a 1:1 superboostin LPV/RTV ratio
 - Evaluation of alternative options: Rifabutin, RAL
 - Appropriately dosed pediatric FDCs (TB Alliance)
Adapting doses and formulations to children

- Smaller size = Smaller absolute dose
 - Growth requires a wide range of doses (difficult with solid dosage forms)
 - Dose relative to size (mg/kg, mg/m², mg/kg^{3/4}) is not proportional and very difficult to predict
 - Developmental changes in drug absorption, distribution, metabolism, excretion, pharmacogenetics
Requirements for pediatric drug dosage forms

- ensure sufficient bioavailability taking into account children's particularities
 - Reach efficacy target (may undergo a maturation process; for antiretrovirals is assumed to be the same as adults)
 - Remain below toxicity target (not necessarily well known)
- contain nontoxic excipients for the age group
 - Limit of inactive ingredients per the dosing regimen
- acceptable and palatable
 - Taste/Sweetness preference differ around the world
- acceptable dose uniformity

Requirements for pediatric drug dosage forms

- easy and safe to administer
 - Flexible dosage: dispersible or chewable tablets, sprinkles, granules
 - Minimum dosing frequency
- socio-culturally acceptable (stigmatization)
- have precise and clear product information
- appropriate for caregivers / setting
 - Stability in Zone IV climatic conditions (30°C, 65 or 70% RH)
 - No clean water required for dispensing medication
 - Heat stable – no refrigeration required

Solid formulations

Advantages
- Nontoxic excipients
- Lower price
 - switch from liquids to solid FDCs
 = US$100 shipment/storage
- Various options for taste masking
- Modified release options
- Stability (storage & in-use & different climates)
- Reduces storage space
- High content uniformity
- Easy administration

Disadvantages
- Dimensions: swallowing
- Requires liquid for swallowing
- Aspiration (safety)
- Difficult dose adaption
- Varying bioavailability
- Dissolution rate impact

Acceptability of 3 mm minitabs in young children
Solid formulations vs. liquid formulations

- **Licensed**

- **Off label use**

From off-label use of Adult formulations to Pediatric FDCs

A drug dosage table is a useful tool to facilitate prescriptions of antiretroviral drugs for children in Thailand

M Ponnet MD¹, K Frederix MD¹, W Petdachai MD², D Wilson MD¹, A Eksaengri MD³ and R Zachariah MBBS PhD⁴

¹Médecins Sans Frontières, Bangkok; ²Prachomklao Hospital, Department of Paediatrics, Petchaburi; ³Technical and Information Unit, R&D Institute, Government Pharmaceutical Organization, Bangkok, Thailand; ⁴Médecins Sans Frontières, Operational Research, Medical Department, Brussels, Belgium

- MSF pediatric drug dosage table (splitting tablets, adding NVP)
- Weight band dosing table created by WHO experts to enable generic production of paediatric FDC
- First paediatric FDC WHO prequalified in 2008, 4 years after adult FDC.
Pediatric Fixed Dose Combinations

- Current pediatric FDCs are NVP based and have been mostly used in older children
- CHER trial
 - HIV diagnosis in the first months of life
 - treatment initiated immediately
- Change in the pediatric HIV treated population
 - Higher viral load & ARV exposed viral population
- P1060 trial
 - regardless of exposure to NVP for PMTCT LPV/r superior to NVP based therapies
Switching from NVP to LPV/r first-line?

LPV/r + 2 NRTIs
- Liquid only currently
- Bitter taste
- Neurotoxic excipients
 - 42% ethanol
 - 15% propylene glycol
- Needs cold chain
- Heavy to carry, hard to hide
- Difficult dosing
- Need for RTV super-boosting in TB/HIV co-infected children

NVP based ART
- FDCs available
- Baby and junior dosing
- Scored tablets
- Can be crushed
- Easy dosing
Lopinavir-Ritonavir challenges

- According to the Biopharmaceutics Classification System (BCS) absorption of oral drugs predictable knowing:
 - its intrinsic permeability across the intestinal mucosa
 - its concentration at absorption site
 - and assuming dose form rapid dissolution
 - ≥85% API dissolution from formulated product in 30 minutes

<table>
<thead>
<tr>
<th></th>
<th>High solubility</th>
<th>Low solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Particle size, polymorphic forms, solubility enhancers</td>
</tr>
<tr>
<td>High permeability</td>
<td>ZDV, FTC</td>
<td></td>
</tr>
<tr>
<td>Low permeability</td>
<td>3TC, ABC</td>
<td>RTV, LPV</td>
</tr>
<tr>
<td>transit time, GI transporters and metabolic enzymes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

highest dose soluble in 250 mL at pH 1 to 7.5

more permeable than co-dosed drug at least 85% absorbed (WHO).
Lopinavir-Ritonavir challenges

- LPV requires RTV boosting
 - RTV is a CYP3A4 substrate and inhibitor.
 - Inhibits GI metabolism by enterocytes CYP3A4 and Pgp efflux transporters (Cmax)
 - Inhibits liver CYP3A4 and Pgp thus maintaining LPV half-life
 - Boosting effect may be affected by GI and liver enzyme maturation

- Lopinavir absorbed in the beginning portion of the GI tract
 - Effect of gastric Ph, GI development on absorption

Initial explorations

- Original LPV and RTV formulations were alcohol based (LVP/r and RTV liquid and soft gel capsules; Abbott)
- Replaced for adults and older children with LPV/r tablets (Abbott)
- Tablets cannot be used in young children as crushed they lose up to 50% bioavailability
- Alternative options explored by DNDi
 - Prodrugs (eg. RTV)
 - Nano particles
 - Nano dispersions

Encouraging PK in animals
Poor taste; 5 years time line (NCE)
Cipla meltrex sprinkles lopimune

[Image: Results of adult bioequivalence study presented at CROI 2012]

Pharmacokinetic parameters

Table 2: Pharmacokinetic parameters of Lopinavir and Ritonavir administered as oral solution and as sprinkles.

<table>
<thead>
<tr>
<th></th>
<th>AUC_{0-1} (hr·μg/ml)</th>
<th>AUC_{0-∞} (hr·μg/ml)</th>
<th>C_{max} (μg/ml)</th>
<th>T_{max} (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprinkles</td>
<td>86.98±19.95</td>
<td>92.99±21.96</td>
<td>6.82±1.3</td>
<td>6.26±2.17</td>
</tr>
<tr>
<td>Solution</td>
<td>84.57±26.48</td>
<td>89.26±27.83</td>
<td>6.28±1.77</td>
<td>5.99±0.85</td>
</tr>
<tr>
<td>Ln-transformed 90%</td>
<td>91.19−126.53</td>
<td>87.75−122.54</td>
<td>01.31−121.02</td>
<td></td>
</tr>
<tr>
<td>Confidence intervals (T/R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprinkles</td>
<td>6.69±2.45</td>
<td>6.86±2.51</td>
<td>0.78±0.23</td>
<td>6.88±1.95</td>
</tr>
<tr>
<td>Solution</td>
<td>6.23±2.22</td>
<td>6.38±2.24</td>
<td>0.77±0.34</td>
<td>5.72±0.59</td>
</tr>
<tr>
<td>Ln-transformed 90%</td>
<td>98.23−123.15</td>
<td>96.63−124.6</td>
<td>08.4 −139.96</td>
<td></td>
</tr>
<tr>
<td>Confidence intervals (T/R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of Least square means T/R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln-transformed</td>
<td>102.51</td>
<td>103.71</td>
<td>109.38</td>
<td></td>
</tr>
<tr>
<td>Ratio of Least square mean T/R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln-transformed</td>
<td>105.08</td>
<td>105.09</td>
<td>104.55</td>
<td></td>
</tr>
</tbody>
</table>

Jaideep A Gogtay Milind Gole Abhishek Khanna Raghu Naidu Geena Malhotra Shrinivas Purandare
Cipla Limited, Mumbai, India; Sitec Labs, India

[Images: Mean Plasma Concentration vs. Time Profile of Lopinavir (Linear) and Mean Plasma Concentration vs. Time Profile of Ritonavir (Linear)]
- Exposure LPV in sprinkles comparable to the Abbott oral solution and historical data
- High variability
 - CV%: 62-66%

Pharmacokinetics and acceptability of a new generic lopinavir/ritonavir sprinkle formulation compared with syrup/tablets in African, HIV-infected infants and children according to WHO weight-band dose recommendations.
R Keishanyu, Q Fillekes, P Kasirye, et al., on behalf of the CHAPAS 2 trial team; 4th Pediatric workshop 2012
Cipla – DNDi – MRC partnership

- DNDi has joined MRC to add to Chapas-2 the key cohort of 1 to 4 years of age
- Further develops with Cipla two LPV/r fixed dose combinations
4-in-1 LPVr FDCs basic questions

- Twin sachets or LPVr + NRTIs granules of the same size in a single sachet/capsule?
 - Are all components compatible? At all ratios?
- Can all components be adequately taste masked?
- Given less than 20% loading for LPV/r and 50% for NRTIs, will the amount of excipients remain within acceptable limits?
- Will bioequivalence of all components be confirmed?
 - Consequences on the clinical development?
- What LPV/r : NRTIs ratio? What dosage strengths? For what weight bands?
Ratios, strengths, weight bands

WHO weight bands dosing is a compromise utilizing existing formulations. FDCs must assemble drugs with different metabolic pathways of different maturation kinetics.

ZDV: glucuronyl transferase + renal excretion

3TC: 5% transsulfoxide; unchanged renal elimination

ABC: alcohol dehydrogenase and glucuronyl transferase

LPV: CYP3A enzymes oxidation

[Graphs and charts showing acquisition of renal function and changes in metabolic capacity over different ages and time periods.]
Which targets? Modeling exposures

- LPV-AZT-3TC combination
 - LPV: Cmin 1 – 8 mg/L (efficacy-toxicity)
 - 3TC: reported AUCs in adults (8.9 to 16.6 mg.h/L)
 - AZT: reported AUC in adults (3 to 5 mg.h/L)

- AUC = Fraction of dose absorbed / clearance function of age and weight
- Weight band dosing
 - Pooling existing PK data and modeling drug exposure according to age and weight bands
Preliminary results in 6 to 20 Kg
In summary

- Pediatric drug development is challenging, generally.
- The context in which new drugs, new formulations, new combinations will be introduced cannot be ignored:
 - Shrinking pediatric population
 - Fragmented market
 - Intellectual property rights obstacles
- We need to think strategically to give HIV infected infants the best chances to reach adulthood safely while keep all their treatment options.
Thank you for your attention

Acknowledgments
Janice Lee
Jean René Kiechel
Stephen Robinson
Ed Capparelli
Jean Marc Treluyer
Saik Urien
Formulation, gastro-intestinal maturation and absorption

- Acceptability of the pediatric formulation is key
- Early gastro-intestinal maturation further modulates absorption
 - Gastric Ph (ionisation, solubility, stability, coating)
 - Gastric emptying time
 - Gastro-intestinal motility
 - Intestinal integrity