Overview

- Definition of treatment failure
- Extent of the problem
- Why do patients fail?
- HIV resistance 101
- First line failures
- Second line failures
- Choosing a third line regimen
Treatment failure definitions

• Clinical:

New or recurrent clinical event indicating severe immunodeficiency (WHO clinical stage 4 condition) after 6 months of effective treatment

• Immunological:

CD4 count falls to the baseline (or below) or Persistent CD4 levels below 100 cells/mm3

• Virological:

“Treatment failure in adults and children, including infants, is defined by a persistently detectable viral load exceeding 1000 copies/ml (that is, 2 consecutive viral load measurements within a 2-month interval, with adherence support between measurements) after at least six months of using ARV drugs”

(Who and SA DOH 2015)
1st line regimen VL monitoring:

<table>
<thead>
<tr>
<th>Viral Load (VL)</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE: Always check hepatitis B before stopping TDF. If patient has chronic hepatitis B, stopping TDF may lead to a fatal hepatitis flare. If hepatitis B positive, TDF should be continued as a 4th drug in the second-line regimen</td>
<td></td>
</tr>
</tbody>
</table>
| <400 copies/mL | • VL monitoring according to duration of ART and routine adherence support
 | • Continue routine VL monitoring as it may be 12 monthly depending on how long patient is on treatment |
| 400-1000 copies/mL | • Assess and manage adherence carefully
 | • Repeat VL in 6 months and manage accordingly |
| >1000 copies/mL | • Adherence assessment and intense adherence support
 | • Repeat VL in 2 months and check HBV status and Hb, if not already done
 | • If <1000 copies/mL, repeat in 6 months and then reassess
 | • If >1000 copies/mL and adherence issues addressed, switch to second line therapy after checking HBV status and Hb |
Second-line regimen

<table>
<thead>
<tr>
<th>First-line virological failure</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failing on a TDF-based first-line regimen</td>
<td>AZT + 3TC + LPV/r</td>
</tr>
<tr>
<td></td>
<td>AZT + TDF + 3TC + LPV/r (If HBV co-infected)</td>
</tr>
<tr>
<td>Failing on a d4T or AZT-based first line regimen</td>
<td>TDF + 3TC (or FTC) + LPV/r</td>
</tr>
<tr>
<td>Dyslipidaemia (total cholesterol >6 mmol/L) or diarrhoea associated with LPV/r</td>
<td>Switch LPV/r to ATV/r</td>
</tr>
<tr>
<td>Anaemia and renal failure</td>
<td>Switch to ABC</td>
</tr>
</tbody>
</table>
Impact of Viral load monitoring

- Reduces unnecessary switching on clinical/CD4 criteria
- Reduces delay in switching from a failing regimen, and resistant mutation accumulation

<table>
<thead>
<tr>
<th></th>
<th>AZT resistance</th>
<th>TDF resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No VL</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td>VL monitoring</td>
<td>10%</td>
<td>30%</td>
</tr>
</tbody>
</table>

(De Luca et al. JID 2013)
Extent of the problem in South Africa

Figure 5: Total patients on antiretroviral therapy by reporting source and calendar period

(Sanac-NSP Report 2014)
Table 8: Viral load testing and suppression in adults and children on ART in South Africa by duration of follow-up and financial year of outcome reporting²

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th></th>
<th>Children</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients remaining on ART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>42 370</td>
<td>115 839</td>
<td>3 535</td>
<td>5 537</td>
</tr>
<tr>
<td>5 years</td>
<td>3 273</td>
<td>11 622</td>
<td>329</td>
<td>1 469</td>
</tr>
<tr>
<td>Viral load done</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>42.0%</td>
<td>37.6%</td>
<td>40.1%</td>
<td>36.6%</td>
</tr>
<tr>
<td>5 years</td>
<td>56.3%</td>
<td>37.2%</td>
<td>55.6%</td>
<td>35.8%</td>
</tr>
<tr>
<td>Viral load <400 copies/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 years</td>
<td>83.7%</td>
<td>77.4%</td>
<td>77.2%</td>
<td>62.3%</td>
</tr>
<tr>
<td>5 years</td>
<td>87.9%</td>
<td>74.0%</td>
<td>79.4%</td>
<td>69.9%</td>
</tr>
</tbody>
</table>

(Sanac-NSP report 2014)
SA retention in ART care

Figure 18: Adult remaining in care by year started ART (cohort)

Percentage adults remaining on ART by duration

Seven-year experience of a primary care antiretroviral treatment programme in Khayelitsha, South Africa

Andrew Boullea, Gilles Van Cutsema,b, Katherine Hilderbranda,b, Carol Craggc, Musaed Abrahamsb, Shaheed Matheec, Nathan Forda,b, Louise Knightb, Meg Oslera, Jonny Myersa, Eric Goemaereb, David Coetzeea and Gary Maartensd
Virological failure and switching to second-line

Cumulative proportion with virological failure or on second-line

Duration on ART in years

- Virological failure
- Starting second-line
Loss to follow-up by year of ART initiation

Cumulative proportion lost to follow-up

Duration on ART in years

logrank p<0.001
And the Eastern Cape?
Inter district comparison for VLD/VLS at 6 months

6 month viral load done and viral suppressed of patients started ART in April - June 2013
(tests done in Oct - Dec 2013)

Eastern Cape 2013 Apr-Jun

<table>
<thead>
<tr>
<th>District</th>
<th>ART at 6 months - Adult VLD rate 6 mm</th>
<th>ART at 6 months - Adult VLS rate 6 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Nzo DM</td>
<td>50.5</td>
<td>85.0</td>
</tr>
<tr>
<td>Amathole DM</td>
<td>44.4</td>
<td>90.6</td>
</tr>
<tr>
<td>C Hani DM</td>
<td>71.8</td>
<td>80.1</td>
</tr>
<tr>
<td>Cacadu DM</td>
<td>87.0</td>
<td>34.4</td>
</tr>
<tr>
<td>Joe Gqabi DM</td>
<td>27.7</td>
<td>78.2</td>
</tr>
<tr>
<td>N Mandela Bay MM</td>
<td>66.7</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Inter-district comparison of Adult LTF, by duration

Adults started ART in 2012, Lost to follow-up by duration
Lost to follow-up at 3, 6, 12 months on treatment, by district

- A Nzo DM
- Amathole DM
- Buffalo City MM
- C Hani DM
- Cacadu DM
- Joe Gqabi DM
- N Mandela Bay MM
- O Tambo DM

Eastern Cape

Analysis done on Phase 6 facilities only
Why do patients fail?

- Primary resistance
- Poor adherence
- Drug interactions
- Malabsorption
- Systems failures (stock outs etc)
Transmitted drug resistance in South Africa: 2000-2010

(Manasa J et al. AIDS Res Hum Retroviruses. 2012)
Adherence check list

- Inadequate treatment literacy
- Side effects
- Depression/ other psych disease
- Poverty & food insecurity
- Substance use
- Social problems
- Work related issues
Drug interactions

Substrates: NNRTI’s, PI’s

Integrase inhibitors

Cytochrome P450

Inducers: Rifampicin, Anti-convulsants
Why do patients fail?

- Primary resistance
- Poor adherence
- Drug interactions
- Malabsorption
- Systems failures (stock outs etc)
HIV resistance 101
Poor adherence → Incomplete viral suppression → Viral Replication → Selection of resistant mutants
Key factors predisposing to resistance developing

- High rate of HIV production and turnover
 - 1 to 10 billion / day
- Reverse Transcriptase is error prone
 - +/- 3 mutations for each viral genome transcribed
- Mutations exist at all alleles in the HIV genome
- Highly heterogenous pool of viruses differing by one or more mutations
- Drug resistant mutants precede the introduction of drugs and are selected out if replication continues in presence of drug
Figure 2: HIV life cycle showing the sites of action of different classes of antiretroviral drugs
Adapted from Walker and colleagues.36 by permission of Elsevier.
Reverse transcriptase enzyme inhibition:

NRTI's:

- ‘false’ drug nucleosides inserted into DNA, blocking further polymerization

NNRTI's:
Mutations:

- **Base substitutions**
 - eg. M184V

- **Insertions**

![Diagram](image)
Susceptible virus (Wild type)

Virus resistant to 3TC (has M184V mutation)

3TC MONOTHERAPY
Susceptible virus (WT)

Resistant to 3TC

Resistant to Efavirenz

Single D4T mutation

HAART with therapeutic levels (>95% adherence)

Viral suppression (VL < 50 copies/ml)
Susceptible virus (WT)

Resistant to 3TC

Resistant to Efavirenz

Single D4T mutation

HAART with subtherapeutic levels (Adherence 60-90%)

Mutations to 3TC and Efavirenz

Partial suppression and selects out virus with resistance mutation(s)
Genotyping

- Sequence RT and protease (and integrase) genes to detect resistance mutations

- Mutation detected if
 - VL > 1000 copies/ml (failing ART)
 - >20% of virus population carries mutation
NRTI resistance

2 main pathways

- Thymidine analogue mutations (TAMS)
 - Selected by: d4T, AZT
 - Resistance to: d4T, AZT, ABC, TDF
 - Sensitizes to: TDF, ABC, ddI, AZT

- K65R
 - TDF, ABC, d4T
 - TDF, ABC, ddI, AZT
• At first genotype (1 year after VF): median 3 TAMs

• Thereafter TAMs accumulated at a rate of 1/4.3 years

(JID, 2009)
M184V/I

• Single mutation high level resistance to 3TC and FTC

• Reduces viral fitness by 1/3

• Slows selection of TAMs

• When it occurs with TAMs:
 • Increases susceptibility to AZT, d4T and TDF
 • Increased resistance to ddl and ABC

• Also resensitizes to TDF in presence of K65R
Abacavir

- Selects for:
 - L74V: compromises ABC & ddl
 - Y115F: compromises ABC
 - K65R: compromises TDF, ABC, ddl