Pretreatment drug resistance and new treatment paradigms in first-line ART

Michelle Moorhouse
25 October 2018
SAHCS 2018
Disclosures/disclaimers

- Speaker fees and honoraria from Gilead Sciences, AbbVie, Cipla, Mylan, Aspen, Sanofi, Pfizer and Janssen
- Conference sponsorship from BD, Gilead, Janssen, Merck, Cipla and Mylan
- Part of ART optimisation collaborations
- Funding from USAID, Unitaid, SAMRC and study drug donations from ViiV Healthcare and Gilead Sciences for ART optimisation studies
Factors influencing drug resistance

Drug toxicities

Social / personal issues

Poor adherence

- Lack of API, drug supply and delivery
- Lack of continuous support and monitoring
- Drug stockouts
- Increasingly stretched healthcare systems

Insufficient drug level

- Interruption of treatment
- Poor potency
- Adding 1 drug to failing regimen
- Prolonging a failing regimen
- Treatment with < 3 drugs
- Inappropriate drug selection

Viral replication in the presence of drug

HIV DR

TDR = transmitted drug resistance
Levels of pretreatment HIVDR (PDR)

EFV/NVP pretreatment HIVDR

In several low- and middle-income countries,

1 in 10 adults starting HIV treatment harbour resistant virus

3 in 10 adults restarting first-line ART with prior exposure to antiretroviral drugs harbour resistant virus

Women starting first-line ART are two times more likely than men to harbour a resistant virus

5 in 10 young children newly diagnosed with HIV harbour resistant virus

Thanks: Silvia B (WHO)
Pretreatment NNRTI drug resistance in special populations

• In children < 18 months, NNRTI resistance = **63.7%** (95% CI: 59.0–68.4) (single study, South Africa, 2014–16)

• In children 0–18 years starting ART, NNRTI resistance = **49.3%** (range 7.5–100%) (meta-analysis, 2014–17)
 - Particularly in PMTCT-exposed children (4/7 studies found > 50% of PMTCT-exposed children had NNRTI DR)

• Prevalence of any TDR and NNRTI resistance is higher among women than men in the majority of surveys

Prevalence estimates of pretreatment HIV DR

<table>
<thead>
<tr>
<th>Country</th>
<th>Women (%)</th>
<th>Men (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uganda</td>
<td>19.2</td>
<td>14.5</td>
</tr>
<tr>
<td>Namibia</td>
<td>15.7</td>
<td>12.6</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>16.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Cameroon</td>
<td>10.6</td>
<td>4</td>
</tr>
</tbody>
</table>

PDR in treatment-naïve patients in selected countries

- Most pretreatment DR is **NNRTI resistance**

![Graph showing prevalence estimates for Uganda, Namibia, Zimbabwe, and Cameroon for different drug resistance categories: NNRTI, NRTI, PI, and NNRTI + NRTI.](image_url)

NNRTI and dual-class resistance detected amongst patients enrolled according to prior ART exposure (SA)

HIVDR:
37% in ART starters with prior exposure to ARVs
15% in ARV-naive
Magnitude of effect of PDR on long-term virological outcomes

- Cohort data 2007–09; 6 countries in sub-Saharan Africa\(^1\)
- PDR results available for 2579 patients
 - 2404 (93%) had no pretreatment DR
 - 123 (5%) had PDR to ≥ 1 prescribed drug
 - 52 (2%) had PDR and received fully active ART
- **CD4+ count** increased less in patients with PDR than in those without (\(\Delta 35\) cells/\(\mu\)L at 12 months; 95% CI 13–58; \(p = 0.002\))
- A separate retrospective study of 801 HIV-1-infected ARV-naive patients from 2001–09
 - Presence of transmitted NNRTI resistance \(\rightarrow\) 1.5-fold increased risk for treatment failure in the first 48 weeks after ART initiation\(^2\)

\(^2\) Taniguchi T et al. AIDS Res Hum Retroviruses 2012; 28:259-264

VF = virologic failure
More recently

• 1,148 HIV-positive treatment-naïve patients enrolled in trial clinics in rural KwaZulu-Natal

• Pretreatment drug resistance prevalence was 9.5% (109/1,148) at 20% interval and 12.8% (147/1,148) and 5% thresholds

• Median of 1.36 years (IQR 0.91-2.13), mostly on TDF/FTC/EFV

Odds ratio (OR)

No pretreatment DR

Pretreatment DR at 5% threshold

1.05, 95% CI = 0.82-1.34

No difference between those with only NNRTI PDR vs. no PDR at the 5% threshold

WHO technical update and 2018 guidelines

<table>
<thead>
<tr>
<th>Population</th>
<th>First-line regimens</th>
<th>Second-line regimens</th>
<th>Third-line regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults and adolescents (incl. women of childbearing potential and pregnant women)</td>
<td>Two NRTIs + DTG</td>
<td>Two NRTIs + (ATV/r or LPV/r)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + EFV</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRV/r + DTG + 1–2 NRTIs (if possible, consider optimisation using genotyping)</td>
</tr>
<tr>
<td>Children (0–10 years)</td>
<td>Two NRTIs + DTG</td>
<td>Two NRTIs + (ATV/r or LPV/r)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + LPV/r</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + NNRTI</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
</tbody>
</table>

- Guidelines include recommendations on the selection of ARV drugs in response to high levels of DR\(^1\)
 - Recommend countries consider changing their first-line ART regimens away from NNRTIs if levels of NNRTI DR reach 10%

WHO technical update and 2018 guidelines

<table>
<thead>
<tr>
<th>Population</th>
<th>First-line regimens</th>
<th>Second-line regimens</th>
<th>Third-line regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults and adolescents (incl. women of childbearing potential and pregnant women)</td>
<td>Two NRTIs + DTG</td>
<td>Two NRTIs + (ATV/r or LPV/r)</td>
<td>DRV/r + DTG + 1–2 NRTIs (if possible, consider optimisation using genotyping)</td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + EFV</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td>Children (0–10 years)</td>
<td>Two NRTIs + DTG</td>
<td>Two NRTIs + (ATV/r or LPV/r)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + LPV/r</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + NNRTI</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
</tbody>
</table>

- Guidelines include recommendations on the selection of ARV drugs in response to high levels of DR\(^1\)
 - Recommend countries consider changing their first-line ART regimens away from NNRTIs if levels of NNRTI DR reach 10%

Primary objective

- Non inferiority of DTG at W48: % HIV RNA < 50 copies/mL by ITT, snapshot analysis (1-sided significance level of 2.5%, lower margin of the 95% CI for the difference = -10%, 90% power)

Conclusions

- Virologic superiority of DTG + ABC/3TC over TDF/FTC/EFV was confirmed at Weeks 96 and 144
DTG in first-line treatment when NNRTI DR is prevalent

- Rate of HIV DR acquisition of DTG at a similar level to that of ATV/r
- DTG generally found to be associated with lower risk of toxicity than both EFV and PIs
 - Risk of neurological toxicity is half that of EFV → reduced risk of toxicity → less discontinuation

Countries in sub-Saharan Africa with substantial prevalence of NNRTI drug resistance in ART initiators should transition from EFV to DTG in first-line ART regimens

Dolutegravir NTD signal

Tsepamo study, Botswana

Neural tube defects in 4/426 pregnancies (0.94%)

Updated data since 01 May 2018: 4/596 (0.67%)

95% CI still does not overlap with other groups

Table: Neural tube defects by exposure

<table>
<thead>
<tr>
<th>NTDs/Exposures</th>
<th>DTG-Conception</th>
<th>ANY Non-DTG ART-Conception</th>
<th>EFV-Conception</th>
<th>DTG Started During Pregnancy</th>
<th>HIV-NEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/426</td>
<td>0.94%</td>
<td>0.12%</td>
<td>0.05%</td>
<td>0.00%</td>
<td>0.09%</td>
</tr>
<tr>
<td>(0.37%, 2.4%)</td>
<td>(0.07%, 0.21%)</td>
<td>(0.02%, 0.15%)</td>
<td>(0.00%, 0.13%)</td>
<td>(0.07%, 0.12%)</td>
<td></td>
</tr>
</tbody>
</table>

Prevalence Difference (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>ref</th>
<th>-0.82%</th>
<th>-0.89%</th>
<th>-0.94%</th>
<th>-0.85%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(-0.24%, -2.3%)</td>
<td>(-0.31%, -2.3%)</td>
<td>(-0.35%, -2.4%)</td>
<td>(-0.27%, -2.3%)</td>
</tr>
</tbody>
</table>
Guidance on the use of DTG in women

Approach to use of DTG across different guideline making bodies

<table>
<thead>
<tr>
<th>ART history</th>
<th>Clinical scenarios</th>
<th>DHHS</th>
<th>BHIVA</th>
<th>WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART-naive or using a non-DTG containing regimen</td>
<td>Early pregnancy*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late pregnancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Childbearing age potential, not using contraception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Childbearing age potential, using effective/consistent contraception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On DTG containing regimen</td>
<td>Early pregnancy*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late pregnancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Childbearing age potential, not using contraception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Childbearing age potential, using effective/consistent contraception</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The definition of early pregnancy period varies in different guidelines.
DHHS: < 8 weeks from LMP; BHIVA: 1st trimester; WHO: < up to 8 weeks from conception.
Safety and Efficacy of DTG and EFV600 in first-line ART

(summary 2018 WHO Systematic Review and NMA)

<table>
<thead>
<tr>
<th>Major outcomes</th>
<th>DTG vs EFV<sub>600</sub></th>
<th>QUALITY OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral suppression (96 weeks)</td>
<td>DTG better</td>
<td>moderate</td>
</tr>
<tr>
<td>Treatment discontinuation</td>
<td>DTG better</td>
<td>high</td>
</tr>
<tr>
<td>CD4+ recovery (96 weeks)</td>
<td>DTG better</td>
<td>moderate</td>
</tr>
<tr>
<td>Mortality</td>
<td>comparable</td>
<td>low</td>
</tr>
<tr>
<td>AIDS progression</td>
<td>comparable</td>
<td>low</td>
</tr>
<tr>
<td>SAE</td>
<td>comparable</td>
<td>low</td>
</tr>
</tbody>
</table>

Reference: Steve Kanters, For WHO ARV GDG, 16-18 May 2018
LPV/r in first-line treatment when NNRTI DR is prevalent

In RLS, LPV/r-based regimen was associated with significantly fewer virologic failures and resistance mutations.

- At baseline, major DRMs were found in 3/27 NVP-failing patients and in 0/13 patients who failed in the LPV/r group.

425 treatment-naive adults patients randomised

<table>
<thead>
<tr>
<th></th>
<th>NVP + TDF/FTC or ZDV/3TC</th>
<th>LPV/r + TDF/FTC or ZDV/3TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virologic failure rate (%)</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>Week 96</td>
<td>P = 0.019</td>
<td></td>
</tr>
<tr>
<td>NVP</td>
<td>27/158</td>
<td>13/159</td>
</tr>
</tbody>
</table>

- Additionally, high levels of NNRTI resistance observed in children in South Africa and Togo support WHO’s 2013 recommendation that all children < 3 years be started on LPV/r-based regimens, irrespective of PMTCT exposure.

Clumeck N et al, AIDS. 2014; 28: 1143–53

DIAMOND: Study design

- DIAMOND is an ongoing, phase 3, single-arm, open-label, prospective, multicentre study evaluating DRV/Cobi/FTC/TAF in a rapid initiation model of care over 48 weeks.
- Objective: Assess efficacy and safety of DRV/Cobi/FTC/TAF in a rapid initiation model of care in newly diagnosed, HIV-1–infected, treatment-naive patients; baseline viral resistance in the study population.

Notes:
Evaluations could be performed sooner based on the availability of results; †Interim analyses were performed once all patients had been assessed for safety at Day 3 and resistance at Week 4, and were updated when all patients continuing treatment reached Week 24.

Image:
- **Day 1 (screening/baseline):** Eligible patients: Adults ≥18 years of age, ≤2 weeks from newly diagnosed HIV-1 infection
- **Day 3 (±1 week):** Safety assessment of baseline laboratory data
- **Week 4 (±7 days):** Review baseline resistance data
- **Week 24 analysis:**
- **Week 48 (primary endpoint):** First dose of D/C/F/TAF was received: As soon as within 24 hours of screening/baseline visit

Results: Before results of the baseline safety and resistance laboratory tests were available.

References:
- NCT03227861
- Huhn G et al. IAC Congress 2018; Poster WEPEC200
91% (99/109) of patients continued treatment through Week 24 – No patients discontinued due to receipt of baseline resistance and only 3 discontinued due to safety stopping rules. No patients discontinued due to lack of efficacy and no patients had protocol-defined virologic failure; there was only 1 discontinuation due to an AE.

Mean HIV-1 RNA decreased from baseline to Week 24 by 3.08 log_{10} copies/mL.

Mean ± SE CD4 count was 413 ± 24 at baseline and 589± 30 cells/mm³ at Week 24.

These findings, together with the demonstrated efficacy, high barrier to resistance, safety profile, and convenience of the DRV/Cobi/FTC/TAF single-tablet regimen, suggest that D/C/F/TAF should be considered a recommended treatment option in a rapid initiation model of care.
Most prevalent HIVDR mutations contributing to PDR in South Africa

- Pretreatment HIVDR: 17.5%
- 13.9% had NNRTI resistance
- 3.1% of participants had NNRTI and NRTI resistance
- 0.5% are resistant to NRTI
- Three participants harboured single major PI mutations (I54V, I84V)

Hunt et al 2017

Most prevalent HIVDR mutations contributing to PDR in South Africa

<table>
<thead>
<tr>
<th>Mutation</th>
<th>NRTI</th>
<th>NNRTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>M41L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A62AV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D67N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K65R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K70E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L74I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V75I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q151M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M184V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T215FY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K219E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **NRTI**
 - NVP
 - EFV

- **NNRTI**
 - NVP
 - ETR
 - RPV

Exemplary figures can be found in Hunt et al 2017.
Rilpivirine? – active against K103N

• Successful switch to RPV/TDF/FTC in HIV-1-infected patients with an isolated K103N mutation acquired during prior NNRTI therapy

Drug Resistance Interpretation: RT

<table>
<thead>
<tr>
<th>NRTI Resistance Mutations:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTI Resistance Mutations:</td>
<td>K103N</td>
</tr>
<tr>
<td>Other Mutations:</td>
<td>None</td>
</tr>
</tbody>
</table>

Nucleoside RTI
- lamivudine (3TC): Susceptible
- abacavir (ABC): Susceptible
- zidovudine (AZT): Susceptible
- stavudine (D4T): Susceptible
- didanosine (DDI): Susceptible
- emtricitabine (FTC): Susceptible
- tenofovir (TDF): Susceptible

Non-Nucleoside RTI
- efavirenz (EFV): High-level resistance
- etravirine (ETR): Susceptible
- nevirapine (NVP): High-level resistance
- rilpivirine (RPV): Susceptible

RT Comments
- K103N causes high-level resistance to NVP, and EFV. It has no effect on ETR or RPV susceptibility.
ECHO/THRIVE study results: TDF/FTC/RPV vs TDF/FTC/EFV

ECHO and THRIVE Week 48 analysis: VL < 50 copies/mL by baseline VL (ITT-TLOVR)

• N(t)RTI background had no effect on virologic response
• No differences between treatment groups in virologic response by gender, region or race
Real-world data: Swedish cohort study 2009–2014: treatment-naïve patients

- 2541 treatment-naïve patients started 2583 episodes of treatment with a new third agent
- Compared with EFV, patients on RPV were least likely to discontinue treatment, whilst patients on LPV/r were most likely to discontinue treatment, followed by RAL

<table>
<thead>
<tr>
<th>Medication</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFV (n=1096)</td>
<td>Reference</td>
</tr>
<tr>
<td>RPV (n =156)</td>
<td>0.33 (0.20 ; 0.54)</td>
</tr>
<tr>
<td>LPV/r (n=292)</td>
<td>2.80 (2.30 ; 3.40)</td>
</tr>
<tr>
<td>ATV/r (n=386)</td>
<td>1.06 (0.88 ; 1.29)</td>
</tr>
<tr>
<td>DRV/r (n=504)</td>
<td>0.94 (0.77 ; 1.14)</td>
</tr>
<tr>
<td>RAL (n=149)</td>
<td>1.47 (1.12 ; 1.92)</td>
</tr>
</tbody>
</table>

ICONA: Comparison of durability of first-line EFV and RPV with TDF/FTC

- After adjustment, compared to those starting RPV, patients treated with EFV were more likely to discontinue at least one drug
 - for any cause [relative hazard (RH) 4.09; 95% CI 2.89 – 5.80]
 - for toxicity (RH 2.23; 95% CI 1.05 – 4.73)
 - for intolerance (RH 5.17; 95% CI 2.66 – 10.07)
 - for proactive switch (RH 10.96; 95% CI 3.17 – 37.87)

- RPV was better tolerated, less toxic and showed longer durability than EFV, without a significant difference in rates of discontinuation because of failures

<table>
<thead>
<tr>
<th>Discontinue ≥ 1 drug in regimen</th>
<th>EFV with TDF/FTC</th>
<th>RPV with TDF/FTC</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26%</td>
<td>13%</td>
<td>P < 0.0001</td>
</tr>
</tbody>
</table>

Other future options?
Doravirine retains antiviral potency against the most prevalent NNRTI-associated resistant viruses

Using clinically relevant concentrations of each drug corrected for protein binding, no viral breakthrough was detected with doravirine in resistance selections using K103N, Y181C, and K103N/Y181C mutants
Other future options?
Bictegravir and cabotegravir show activity against InSTI- and NNRTI-associated resistant viruses

Cabotegravir has shown efficacy against five different NNRTI-resistant or NRTI-resistant viruses, with activity equivalent to that against wild-type virus (fold change values ranged from 0.9 to 1.4)
Reduced drug regimens in ARV-naïve patients
DTG-based dual therapy regimens

<table>
<thead>
<tr>
<th>Name</th>
<th>Design</th>
<th>Regimen(s)</th>
<th>N</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWORD 1</td>
<td>Open label RCT switch</td>
<td>DTG/RPV versus continue regimen</td>
<td>1024</td>
<td>Virologically suppressed; no prior VF</td>
</tr>
<tr>
<td>and 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PADDLE</td>
<td>Pilot</td>
<td>DTG/3TC</td>
<td>20</td>
<td>ARV-naïve; VL < 100 000 copies/mL</td>
</tr>
<tr>
<td>ACTG 5353</td>
<td>Single arm</td>
<td>DTG/3TC</td>
<td>120</td>
<td>ARV-naïve; VL = 1000 – 500 000 copies/mL</td>
</tr>
<tr>
<td>GEMINI 1</td>
<td>RCT double blind</td>
<td>DTG/3TC versus DTG + TDF/FTC</td>
<td>1433</td>
<td>ARV-naïve; VL = 1000 – 500 000 copies/mL</td>
</tr>
<tr>
<td>and 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMIDOL</td>
<td>Single arm</td>
<td>DTG/3TC</td>
<td>104</td>
<td>Virologically suppressed on first line 2 NRTIs + PI/ NNRTI/InSTI</td>
</tr>
<tr>
<td>ANRS 167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPIRE</td>
<td>RCT switch</td>
<td>DTG/3TC versus continue regimen</td>
<td>89</td>
<td>Virologically suppressed</td>
</tr>
<tr>
<td>TANGO</td>
<td>Open label RCT switch</td>
<td>DTG/3TC versus TAF-based regimen</td>
<td>750</td>
<td>Virologically suppressed on TAF-based regimen</td>
</tr>
</tbody>
</table>
GEMINI: DTG + 3TC noninferior at 48 weeks

Parallel randomised double blind phase 3 non-inferiority studies

- No treatment-emergent InSTI or NRTI mutations in patients with VF in either arm
- Confirmed VF with DTG + 3TC: n = 6; Confirmed VF with DTG + TDF/FTC: n = 4
- Bone and kidney safety markers more favourable with DTG + 3TC vs DTG + TDF/FTC

DTG + 3TC was noninferior versus 3-drug therapy; no resistance in either arm

*Adjusted for HIV-1 RNA (≤ vs > 100,000 copies/mL), CD4+ cell count (≤ vs > 200 cells/μL), and study (GEMINI-1 vs GEMINI-2).

iPP = the ITT-E population excluding significant protocol violations
SWORD 1 and 2: Switch from current ART to DTG + RPV dual regimen

Objectives: To evaluate the efficacy and safety of DTG + RPV compared with continuation of current ART regimen (CAR) for 48 weeks in a large randomised population with suppressed viral load

Primary endpoint: Proportion of participants with virologic failure (HIV-1 RNA ≥ 50 copies/mL)
Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>DTG + RPV (n=513); n (%)</th>
<th>CAR (n=511); n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD) ≥ 50 years</td>
<td>43 (11.1) 147 (29)</td>
<td>43 (10.2) 142 (28)</td>
</tr>
<tr>
<td>Female</td>
<td>120 (23) 108 (21)</td>
<td></td>
</tr>
<tr>
<td>Race, non-white</td>
<td>92 (18) 111 (22)</td>
<td></td>
</tr>
<tr>
<td>CD4+ cell count, cells/μL (median) ≤500</td>
<td>611 165 (32) 348 (68) 348 (68)</td>
<td></td>
</tr>
<tr>
<td>CD4+ cell count, cells/μL (median) >500</td>
<td>638 149 (29) 362 (71)</td>
<td></td>
</tr>
<tr>
<td>Baseline 3rd-agent class PI</td>
<td>133 (26) 275 (54) 105 (20)</td>
<td>136 (27) 278 (54) 97 (19)</td>
</tr>
<tr>
<td>Baseline TDF use</td>
<td>374 (73) 359 (70)</td>
<td></td>
</tr>
<tr>
<td>Months of ART prior to Day 1, median</td>
<td>51 53</td>
<td>53</td>
</tr>
</tbody>
</table>

Week 48 efficacy

Treatment difference: -0.2% (95% CI: -3.0%–2.5%)

DTG + RPV was non-inferior to CAR (current ART regimen) over 48 weeks in participants with HIV suppression. Results support the use of this two-drug regimen to maintain HIV suppression.

DUAL: DRV/3TC vs DRV/r + 2NRTIs

Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>DRV/r + 2NRTI N = 123</th>
<th>DRV/r + 3TC N = 126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CD4+/uL, median</td>
<td>568</td>
<td>596</td>
</tr>
<tr>
<td>Nadir CD4+/uL, median</td>
<td>240</td>
<td>253</td>
</tr>
<tr>
<td>Duration of HIV RNA <50 copies/mL (weeks), median</td>
<td>113 (p = 0.014)</td>
<td>79.5</td>
</tr>
<tr>
<td>HCV coinfection, %</td>
<td>22.8</td>
<td>25.4</td>
</tr>
<tr>
<td>N(t)RTI at baseline, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF/FTC</td>
<td>76</td>
<td>74</td>
</tr>
<tr>
<td>ABC/3TC</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Discontinued at Week 48, N (%)</td>
<td>4 (3.3)</td>
<td>9 (7.1)</td>
</tr>
<tr>
<td>AE / confirmed VF</td>
<td>2 / 0</td>
<td>1 / 2</td>
</tr>
<tr>
<td>Withdrew / lost to f-up</td>
<td>1 / 1</td>
<td>3 / 3</td>
</tr>
</tbody>
</table>

Week 48 efficacy

Response rate (%)

- HIV RNA <50 c/mL: 88.9% vs 92.7%
- HIV RNA ≥50 c/mL: [no data]
- No virologic data

Difference (95% IC): -3.8 (-11.0; 3.4)

- Dual therapy with DRV/r plus 3TC was non-inferior regarding maintenance of viral suppression and equally well tolerated as DRV/r plus TDF/FTC (or ABC/3TC)
- Persistent virological suppression was maintained after switching to dual therapy with DRV/r plus 3TC

Pulido F, Clin Infect Dis 2017; 65:2112-8
Prevalence of NNRTI pretreatment resistance by calendar year across studies

Increasing trends in levels of DR observed

Will they continue to increase?

Most DR strains arise independently \rightarrow ARV regimens with a **high genetic barrier** to resistance and improved patient **adherence** may mitigate DR increases by reducing the generation of new ARV-resistant strains\(^1\)

Addressing PDR

↓ chance of transmitting resistant virus

- Improve adherence
 - Strengthen adherence support

- Potent fixed-dose combination regimens
 - Suppress HIV-RNA
 - High adherence

- VL monitoring
 - Promptly switch individuals with confirmed VF to second-line treatment
 - Minimise time spent on a failing regimen with resistant virus
 - Perform viral load monitoring
 - HIV-DR testing with failure

- Use agents with high genetic barrier
 - Change first-line regimen at a national level, from an NNRTI-based regimen to DTG- or PI/r-based regimen

Which is the more cost-effective strategy?

http://apps.who.int/iris/bitstream/handle/10665/255896/9789241512831-eng.pdf
Factors influencing drug resistance

Drug toxicities
Social / personal issues

Poor adherence
- Lack of API, drug supply and delivery
- Lack of continuous support and monitoring

Insufficient drug level
- Interruption of treatment
- Poor potency
- Adding 1 drug to failing regimen
 - Prolonging a failing regimen
 - Treatment with < 3 drugs
 - Inappropriate drug selection

Viral replication in the presence of drug

HIV DR

TDR = transmitted drug resistance
Factors influencing drug resistance

Drug toxicities

Social / personal issues

Poor adherence

- Lack of API, drug supply and delivery
- Lack of continuous support and monitoring

Drug stockouts

Increasingly stretched healthcare systems

Insufficient drug level

- Interruption of treatment
- Poor potency
- Adding 1 drug to failing regimen

- Prolonging a failing regimen
- Treatment with < 3 drugs
- Inappropriate drug selection

Viral replication in the presence of drug

HIV DR

TDR = transmitted drug resistance
Acknowledgements
Pretreatment drug resistance and new treatment paradigms in first-line ART

Michelle Moorhouse
25 October 2018
SAHCS 2018
Pretreatment drug resistance and new treatment paradigms in first-line ART

Michelle Moorhouse
October 2018
27th International Workshop on HIV Drug Resistance and Treatment Strategies