Francois Venter

October 2018

Low dose darunavir

Thanks DoH, WHO, PEPFAR, CHAI, UCT, Michelle Moorhouse, Celicia Serenata, Polly Clayden
Optimize

- Led by Wits RHI, the PEPFAR-supported, USAID-managed OPTIMIZE consortium focuses on accelerating access to PEPFAR’s priority first- and second-line treatment products. OPTIMIZE, formed through an innovative co-formulation effort, partners with five leading private and public sector organizations and leverages co-funding from Unitaid, SAMRC and pharma.
- Supporting PEPFAR’s TLD Transition & Global ART Optimization
- Coordinates with several countries for TLD introduction
- Close coordination in SA with Pretoria office – critical for TLD
- ADVANCE and the low-dose darunavir study (052 are two studies in OPTIMIZE (with several related and sub-studies)
Optimizing Drug Regimens
Major Strategies

- Co-formulation (use FDCs or co-blister pack)
- Reformulation (use extended release formulation; improve drug bioavailability)
- Dose adjustment (improve toxicity, reduce pill burden/size)
- New drugs (substitution to improve toxicity or increase efficacy)
- New strategies (eg: induction-maintenance; intensification)
- Drug manufacturing process (improve API route synthesis and reduce cost)
Drug Interactions will be greater as patients age.

WHO regimens 2018/soon

Tenofovir + XTC + Efavirenz

AZT + Lamivudine + Darunavir, DTG, doravirine, other

XTC, other nukes + Darunavir, Dolutegravir, Etravirine

Failure
Efficacy of LPV/r-Based Therapy in Second-Line ART

- **EARNEST**: Hakim J, et al. CROI 2015; Poster 552
- **ACTG 5273**: La Rosa AM, et al. CROI 2016; Abstract 30

Percentage Suppressed

<table>
<thead>
<tr>
<th>Study</th>
<th>Week</th>
<th><400 c/mL</th>
<th><200 c/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARNEST</td>
<td>144</td>
<td>86%</td>
<td>81%</td>
</tr>
<tr>
<td>SECOND-LINE</td>
<td>96</td>
<td>76%</td>
<td>80%</td>
</tr>
<tr>
<td>ACTG 5273</td>
<td>48</td>
<td>90%</td>
<td>92%</td>
</tr>
</tbody>
</table>

EARNEST: <400 c/mL
SECOND-LINE: <200 c/mL
ACTG 5273: <400 c/mL

For more information, see:
- EARNEST: Hakim J, et al. CROI 2015; Poster 552
- ACTG 5273: La Rosa AM, et al. CROI 2016; Abstract 30
Randomized Comparison of 3 Second-Line ART Regimens in Africa: The 2Lady/ANRS/EDCTP Study

- A 48-week, randomized, open label, non-inferiority trial in 3 African cities—Yaoundé (Cameroun), Bobo-Dioulasso (Burkina Faso), Dakar (Senegal)—comparing efficacy and safety of 3 second-line regimens from Jan 2010 to Oct 2012:

N= 454
- >18 years old
- Failed first-line NNRTI-based ART (confirmed VL ≥1000 cpm)
- Good adherence (≥80%)

Baseline characteristics:
- 72% women
- Median duration on ART — 49 months (IQR 33–69)
- Median CD4 count of 183 cell/mm³ (IQR 87–290)
- Median VL of 4.5 Log_{10} (IQR 4–5.1).
- ~99% had resistance to at least 1 first-line drug and 95% to 2 classes

Primary efficacy endpoint:
- HIV-1 RNA <50 c/mL at 48 weeks
 (ITT and per protocol; non inferiority margin of 15%)

Arm A: LPV/r + TDF/FTC n=152
Arm B: LPV/r + ABC + ddi n=145
Arm C: DRV/r + TDF/FTC n=154

ITT: Proportion in Each Arm of Patients With VL <50 Copies/mL With CI 95%

![Graph showing proportion of patients with VL <50 Copies/mL over time.](image-url)
The 2Lady/ANRS/EDCTP Study: Results

• In multivariate analysis, VL ≤100,000 copies/mL at baseline was an independent predictor of viral suppression

• No difference among arms was observed in:
 • Median CD4 gain (+127 cells/μL)
 • Mortality
 • Severe adverse events

• No protease mutations were observed in patients failing second-line therapy

Conclusions:
• Despite multiple NRTI mutations, PI/b-based second-line regimens showed satisfactory results
• However, results for patients with high VL at switch to second-line are of special concern
• The WHO recommended regimen (LPV/r + 2NRTIs) remains a valid option
Safety issues with PIs and AZT

- AZT associated with gastrointestinal upset, anaemia, long term lipoatrophy, lactic acidosis
- LOTS of tablets twice daily

LPV/r
- GI upset
- Lipids
- Hepatitis
- Dysglycaemia

ATV/r
- Jaundice
- Lipids (low potential)
- Renal stones
- Hepatitis

DRV/r
- Rash
- GI upset
- Hepatitis
Safety issues with Pis and AZT

AZT associated with gastrointestinal upsets, anaemia, long term lipoatrophy, lactic acidosis

Switching to second line is a big deal!
WHO Guidelines – Dec 2015

<table>
<thead>
<tr>
<th>Options</th>
<th>First-Line</th>
<th>Second-Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred*</td>
<td>• TDF + 3TC (or FTC) + EFV</td>
<td>• 2 NRTIs + ATV/r or LPV/r</td>
</tr>
</tbody>
</table>
| **Alternative** | • AZT + 3TC + EFV
• AZT + 3TC + NVP
• TDF + 3TC (or FTC) + NVP | • 2 NRTIs + DRV/r
• TDF + 3TC (or FTC) + DTG†
• TDF + 3TC (or FTC) + EFV\(_{400}\)†
• LPV/r + RAL |
WHO technical update and 2018 guidelines

<table>
<thead>
<tr>
<th>Population</th>
<th>First-line regimens</th>
<th>Second-line regimens</th>
<th>Third-line regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults and adolescents (incl. women of childbearing potential and pregnant women)</td>
<td>Two NRTIs + DTG</td>
<td>Two NRTIs + (ATV/r or LPV/r)</td>
<td>DRV/r + DTG + 1–2 NRTIs (if possible, consider optimisation using genotyping)</td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + EFV</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + LPV/r</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + NNRTI</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td>Children (0–10 years)</td>
<td>Two NRTIs + DTG</td>
<td>Two NRTIs + (ATV/r or LPV/r)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + LPV/r</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two NRTIs + NNRTI</td>
<td>Two NRTIs + DTG</td>
<td></td>
</tr>
</tbody>
</table>

- Guidelines include recommendations on the selection of ARV drugs in response to high levels of DR\(^1\)
 - Recommend countries consider changing their first-line ART regimens away from NNRTIs if levels of NNRTI DR reach 10%

SA guidelines (state)

Third-line antiretroviral therapy programme in the South African public sector: cohort description and virological outcomes

Michelle Moorhouse MBCh (Wits), DA (SA), FRSPH, Gary Maartens, MBChB, MMed, Willem Daniel Francois Venter, MBCh, MMed, FCP (SA), DTM&H, Din HIV Man (SA)
Current recommendations re DRV dosing:
SAHCSA

• ATV/r 300/100 mg preferred PI/r for second-line ART
• “When the appropriate dose tablet becomes available, the [DRV/r] 800/100 mg daily dose will be a feasible option in second-line ART, with fewer side effects than the twice-daily dosing” – now available
• If on PI and VL LDL – switch to 800/100
• DRV/r 600/100 mg bd third-line - switch to 800/100 if no baseline VL
Using DRV/r 800/100 mg in third-line ART

- Currently patients on DRV in third-line receive DRV/r 600/100 mg bid
- A small proportion of third-line patients have no DRV RAMs, and in such patients it may be possible to use DRV/r 800/100 mg daily instead of DRV/r 600/100 mg bid to, reducing pill burden, dosing frequency and side effects
- Patients initiating third-line ART: if DRV score (Stanford) is zero on all genotypes, may initiate DRV 800/100 mg daily
- Switching patients already on third-line: the patient’s VL must be LDL, AND the DRV score (Stanford) MUST be zero on all genotypes the patient has had done
So why low dose DRV?

- Most drugs titrated against toxicity – THEN think about efficacy (VL) – and dose stopped once they harmonise
- Little impetus to lower dose further
- Lots of examples of dose reduction - AZT, d4T, EFV, ATV
- DRV registration studies mainly in treatment experienced patients
- Lots of excitement in 2012 – “red pill then blue pill” – TDF/3TC/EFV400 then DRV/DTG
Pill "A" to Pill "B" – two single tablet regimens?

- Pill "A": TDF/3TC/EFV400, $100
- Pill "B": DRV400/r/DTG, $250

- Two pills, used in sequence
- Simple treatment rule – task shifting
- No overlapping drug resistance
- Mass generic production
- Low cost: $100 and $250 per person-year
The approved dose DRV/r is 800/100 mg once daily for PI-naïve patients.

DRV/r is the most highly recommended PI in international treatment guidelines.

However, DRV/r is rarely used in sub-Saharan Africa, because of high treatment costs.

Results from several pilot studies and PK/PD analyses suggest that DRV/r 400/100 mg once daily shows equivalent efficacy to the standard dose.

Therefore the WHRI 052 study was designed to evaluate efficacy and safety of DRV/r 400/100 mg once daily as a switch option.
POWER trials: % HIV RNA > 1 log reduction at Week 24, by dose and baseline DRV resistance

<table>
<thead>
<tr>
<th>DRV/r dose group</th>
<th>DRV FC < 4 (sensitive)</th>
<th>DRV FC > 4 (resistant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD 400/100</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td>OD 800/100</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td>BID 400/100</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td>BID 600/100</td>
<td>80%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Haubrich et al. AIDS 2007, 21: F11-F18

22nd International AIDS Conference, Amsterdam, the Netherlands, July 2018 [TUAB0107LB]
Non-inferior efficacy for darunavir/ritonavir 400/100 mg once daily versus lopinavir/ritonavir, for patients with HIV RNA below 50 copies/mL in South Africa: The 48-week WRHI 052 study

Francois Venter1, Michelle Moorhouse1, Ellisha Maharaj1, Godspower Akpomiemie1, Bryony Simmons2, Ambar Qavi2, Celicia Serenata1, Simiso Sokhela1, Andrew Hill3

1University of Witwatersrand, WITS Reproductive Health and HIV Institute, Johannesburg, South Africa; 2Imperial College, Faculty of Medicine, London, United Kingdom; 3Liverpool University, Pharmacology, Liverpool, United Kingdom

22nd International AIDS Conference, Amsterdam, the Netherlands, July 2018

Session B35: Regimen simplification and switch studies [TUAB0107LB]
WRHI 052 study: Trial design

Inclusion criteria:

- On a LPV/r-containing regimen for > 6 months with no history of other PI use
- HIV-1 RNA level < 50 copies/mL in the last 60 days

300 subjects

2NRTI + DRV/r 400/100 mg QD
n = 148

2NRTI + LPV/r
n = 152

48 Weeks

Open-label, 48 week study in Johannesburg, South Africa

Study visits at Baseline, Week 12, 24, 36 and 48

Resistance testing for samples with HIV RNA > 200 copies/mL on study

22nd International AIDS Conference, Amsterdam, the Netherlands, July 2018 [TUAB0107LB]
Main efficacy endpoint: FDA SNAPSHOT: Switch equals failure analysis

If a patient shows a confirmed elevation in HIV RNA > 50 copies/mL at Week 48, this is a failure. Change in randomised treatment or missing data is also a failure.

Secondary endpoint: ITT: Switch included analysis

This analysis also includes the HIV RNA levels at Week 48, after changes in treatment. Missing data is failure.

New FDA non-inferiority margin for switch studies = -4%

The trial was originally powered for a -12% NI margin, but the -4% margin was added to the analysis plan after consultation with the trial DSMB.
Study disposition

- **300 Subjects**
 - **DRV/r + NRTIs**
 - n = 148
 - 4 subjects withdrawn
 - Adverse event: 2 (1%)
 - Withdrew consent: 1 (1%)
 - Protocol deviation*: 0 (0%)
 - Dead: 1 (1%)
 - **LPV/r + NRTIs**
 - n = 152
 - 3 subjects withdrawn
 - Adverse event: 1 (1%)
 - Withdrew consent: 1 (1%)
 - Protocol deviation: 1 (1%)
 - Dead: 0 (0%)

Protocol deviation in LPV/r arm was due to non-compliance.

97% completed Week 48 (n=144)
98% completed Week 48 (n=149)

22nd International AIDS Conference, Amsterdam, the Netherlands, July 2018 [TUAB0107LB]
Baseline characteristics (ITT)

<table>
<thead>
<tr>
<th></th>
<th>DRV/r + NRTIs (n=148)</th>
<th>LPV/r + NRTIs (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (median, years)</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Male (%)</td>
<td>34%</td>
<td>30%</td>
</tr>
<tr>
<td>Female (%)</td>
<td>66%</td>
<td>70%</td>
</tr>
<tr>
<td>Black (%)</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>Weight (median, kg)</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>HIV-1 RNA < 50 copies/mL (%)</td>
<td>100%</td>
<td>98%</td>
</tr>
<tr>
<td>Mean CD4+ cell count (cells/uL)</td>
<td>623</td>
<td>646</td>
</tr>
</tbody>
</table>
HIV RNA by study visit (observed data)

DRV/r + NRTIs
- N=148

LPV/r + NRTIs
- N=152

<table>
<thead>
<tr>
<th>Visit</th>
<th><50 copies/mL</th>
<th>50-199 copies/mL</th>
<th>200-999 copies/mL</th>
<th>1000+ copies/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 24</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 36</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 48</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22nd International AIDS Conference, Amsterdam, the Netherlands, July 2018 [TUAB0107LB]
HIV RNA < 50 copies/mL at Week 48
FDA Snapshot and ITT population

Switch=failure analysis (FDA Snapshot)
Difference = +1.9% (-3.7%, +6.5%)*

Switch included analysis (ITT)
Difference = +1.9% (-3.4%, +7.3%)*

* 95% confidence intervals from univariate analysis

22nd International AIDS Conference, Amsterdam, the Netherlands, July 2018 [TUAB0107LB]
Drug resistance

Genotypic resistance tests on samples with HIV RNA > 200 copies/mL at any visit to Week 48

<table>
<thead>
<tr>
<th>Resistance analysis</th>
<th>DRV/r +NRTIs (n=4)</th>
<th>LPV/r + NRTIs (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PI or NRTI mutations</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NRTI</td>
<td>1</td>
<td>4*</td>
</tr>
<tr>
<td>M184V</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>K219E</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K65R</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Y115E</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K70R</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*NRTI mutations may have been archived from prior virological failure on first-line treatment
Summary of adverse events

<table>
<thead>
<tr>
<th></th>
<th>DRV/r + NRTIs (n=148)</th>
<th>LPV/r + NRTIs (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event, n (%)</td>
<td>100 (68)</td>
<td>106 (70)</td>
</tr>
<tr>
<td>Most common AEs (≥ 4% in either arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>31 (21)</td>
<td>34 (22)</td>
</tr>
<tr>
<td>Influenza</td>
<td>14 (9)</td>
<td>13 (9)</td>
</tr>
<tr>
<td>Rash</td>
<td>3 (2)</td>
<td>11 (7)</td>
</tr>
<tr>
<td>Elevated ALT</td>
<td>8 (5)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Headache</td>
<td>6 (4)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Backache</td>
<td>3 (2)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6 (4)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Transaminitis</td>
<td>7 (5)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Constipation</td>
<td>6 (4)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Drug-related AE</td>
<td>30 (20)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>6 (4)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Drug-related serious AEs**</td>
<td>3 (2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>AEs leading to withdrawal</td>
<td>2 (1)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

*1 Patient died from MI after week 12. ** DRV arm: all LFT elevations, 2 led to withdrawal
Treatment emergent grade 3 or 4 laboratory abnormalities

<table>
<thead>
<tr>
<th></th>
<th>DRV/r Grade 3 or 4</th>
<th>LPV/r Grade 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematology, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Clinical Chemistry, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>3 (2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>AST</td>
<td>3 (2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>LDL</td>
<td>6 (4)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Creatinine, serum</td>
<td>1 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Creatinine clearance</td>
<td>3 (2)</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>
Conclusions

In this 300 patient study, DRV/r at the lower dose of 400/100 mg once daily showed non-inferior efficacy to LPV/r as a switch option for patients with HIV RNA < 50 copies/mL.

These results are consistent with pilot studies of low-dose DRV/r, which showed no difference in efficacy versus standard 800/100 mg once daily dosing for PI-naïve patients.

A lower dose of DRV/r would be better tolerated and cheaper to produce than the standard 800/100 mg dose, LPV/r or ATV/r.

This result needs to be confirmed in new studies where DRV/r 400/100 mg once daily is used in PI naïve patients – for example after failure of first-line treatment.
We would like to thank everyone who contributed to this study:

Participants and their families

Study coordinators and staff

Data Safety Monitoring Board

Country:
- South Africa: 197
- Zimbabwe: 87
- Malawi: 4
- Lesotho: 3
- Congo: 2
- Mozambique: 2
- Burundi: 1
- Nigeria: 1
- eSwatini: 1
- Uganda: 1
- Zambia: 1

n=300 Patients
Thank you…

- South African Medical Research Council and USAID for funding
- South African Department of Health
- OPTIMIZE Consortium, especially Andrew Hill and colleagues, Wits RHI staff and Clinton Health Access Initiative (CHAI)
- Scientific Advisory Committee
Now what?

- Article under review
- ?role of DTG