Viral hepatitis C in the context of high risk sex and key populations in South Africa

Andrew Scheibe

27 October 2018
Disclosures

Faculty member of the Bristol Myers Squibb Foundation (BMSF)
Honorarium received from Gilead Pharmaceuticals
Overview

• Overview of hepatitis C
• Global epidemiology
• South African data on HCV among key populations
• Conclusions and recommendations
Hepatitis C virus

- RNA virus
- Rapid replication - \(10^{12}\) virions produced per day
- No RNA polymerase and no proofreading ability of new viruses – resulting in many mutations
- Six viral genotypes: 1 - 6
Transmission

Hepatitis C is transmitted through BLOOD contact

PARENTERAL ROUTE
- Most efficiently
- Predominant risk among people who inject with contaminated injecting equipment
- Needle-stick injuries
- Blood/blood products before 1992
- Tattooing, body piercing
- ? Traditional/cultural practices

SEXUAL TRANSMISSION
- Lower risk than HBV and HIV
- Elevated risk in ‘high risk’ or prolonged sex
 - Men who have sex with men
 - High risk sex practices

MOTHER-TO-CHILD TRANSMISSION
- 1-5% infants born to HCV infected women
- Vertical transmission risk increases to ~20% in HIV/HCV co-infected mothers
Global epidemiology
HCV incidence, general population (2015)

WHO Global Hepatitis report 2017
Natural history

- **Acute HCV**
 - 55% - 85%

- **Chronic HCV infection**
 - 5% - 25%

- **Cirrhosis**
 - 95% - 99%
 - 5% to 25%

- **Decompensation and / or Hepatocellular cancer**
 - 1% - 4% / yr

- **Resolution of acute infection**
 - 15% - 45%

- **Stable slowly progressive infection**
 - 75% - 95%

- **Stable compensated cirrhosis**
 - 95% - 99%

Extrahepatic manifestations
- autoimmune disorders
- porphyria cutanea tarda
- lymphoproliferative disorders
- insulin resistance
Factors progressing infection

• Previous and concurrent alcohol consumption
• Older age at time of infection (>40 years)
• Male gender
• Other co-morbidities:
 - HIV / HCV co-infection
 - HIV / HBV co-infection
 - Obesity
 - Iron overload
Diagnosis

Screening Hepatitis C antibody test*

Positive \downarrow
- **Confirmation using nucleic acid testing (RNA testing)**

Positive \downarrow
- **ACTIVE HEPATITIS C INFECTION. (Genotyping)**

Negative \rightarrow
- **Virtually excludes infection**

Negative \rightarrow
- **No active infection – likely previous cleared infection**

* Future role of HCV core Ag testing in high prevalence settings

Indications for screening
- People who inject drugs
- Received blood/ organs pre-1992
- Unsafe medical injections
- Occupational exposure
- Chronic haemodialysis
- High-risk/traumatic sexual practices
- Men who have sex with men
- Use of intranasal cocaine
- Tattoos, piercing, acupuncture
- Surgical procedures without proper sterilisation procedures
- Traditional/cultural practices
Prevention & management

• No vaccine
• Prevention
 • Universal precautions and safe medical injections
 • Sterile injecting equipment and opioid substitution therapy for PWID
 • Condoms and lubricant
• Assess liver function, co-morbidities & medications
• Curative treatment with direct acting antivirals
 • All HCV infected people
 • Oral, combination treatment (12 – 24 weeks)
 • High cure rate (>90%), few side effects
 • No lasting immunity – potential for re-infection
 • Not yet registered in South Africa (SAHPRA)
 • Available via section 21
South African epidemiology

- Real seroprevalence of HCV is unknown
- Thought to be a low prevalence country
- Existing data suggests:
 - Urban blood donors (low risk): 0.01 - 2.6%
 - Higher rate in the rural population: 3.8%
 - Rates expected to be higher in high-risk groups
HCV among MSM & MSW (Cape Town) (n=500)

Hepatitis C Infection Prevalence

<table>
<thead>
<tr>
<th></th>
<th>Screened positive, n</th>
<th>Prevalence, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All participants (N=500)</td>
<td>17</td>
<td>3.4 (2.1 - 5.4)</td>
</tr>
<tr>
<td>MSM (N=285)</td>
<td>16</td>
<td>5.6 (3.5 - 9.0)</td>
</tr>
<tr>
<td>Non-MSM (N=215)</td>
<td>1</td>
<td>0.5 (0.06 - 3.3)</td>
</tr>
</tbody>
</table>

CI = confidence interval; MSM = men who have sex with men.

Genotypes:
- Genotype 1a - 50.0%
- Genotype 2 - 35.7%
- Genotype 4 - 14.3%
- Genotype 3 and 5 - 0%

Risk Factors:
- White ethnicity
- Low CD4+ count
- Drug use (any method)
- Sex while high
- Sex with sex worker

Source: Cogela et al.,
HCV among MSM who use drugs (Cape Town) (n=41)

<table>
<thead>
<tr>
<th>Variable, participant demographics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug-injecting behaviour</td>
<td></td>
</tr>
<tr>
<td>Ever injected</td>
<td>36 (88)</td>
</tr>
<tr>
<td>In the past 3 months</td>
<td>33 (80)</td>
</tr>
<tr>
<td>Non-intravenous</td>
<td>32 (78)</td>
</tr>
<tr>
<td>Intravenous and non-intravenous</td>
<td>27 (66)</td>
</tr>
<tr>
<td>Ever shared equipment or needles</td>
<td>29 (71)</td>
</tr>
<tr>
<td>Condom use in the past 3 months</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>11 (27)</td>
</tr>
<tr>
<td>Some of the time</td>
<td>6 (15)</td>
</tr>
<tr>
<td>Most of the time</td>
<td>13 (32)</td>
</tr>
<tr>
<td>All of the time</td>
<td>6 (15)</td>
</tr>
<tr>
<td>Not reported/applicable</td>
<td>5 (12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infection</th>
<th>% (n/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV antibody +ve</td>
<td>27% (11/41)</td>
</tr>
<tr>
<td>HBVsAg +ve</td>
<td>2% (1/41)</td>
</tr>
<tr>
<td>HIV +ve</td>
<td>40% (12/30)</td>
</tr>
<tr>
<td>HIV-HCV +ve</td>
<td>38% (3/8)</td>
</tr>
</tbody>
</table>

Source: Semugoma et al, SAMJ 2017
HCV initiative among Key Populations

• Aimed to recruit 3,500 Key Populations
• The study was linked to existing HIV prevention services and included:

- An assessment enquiring about demographics, substance use and risk practices
- HCV point-of-care (OraQuick®)
- HCV viral load
 (COBAS® AmpliPrep/ COBAS TaqMan® HCV test)
Participant socio-demographic characteristics (per protocol analysis)

<table>
<thead>
<tr>
<th></th>
<th>SW</th>
<th>MSM</th>
<th>PWID</th>
<th>PWUD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>1531 (44.5%)</td>
<td>747 (21.7%)</td>
<td>941 (27.3%)</td>
<td>224 (6.5%)</td>
<td>3443</td>
</tr>
<tr>
<td>Age [median (Range)]</td>
<td>29 (18 - 67)</td>
<td>29 (18 - 75)</td>
<td>29 (18 - 61)</td>
<td>29 (18 - 61)</td>
<td>29 (18 - 75)</td>
</tr>
<tr>
<td>Gender [n (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>48 (3.2%)</td>
<td>718 (96.8%)</td>
<td>813 (87.0%)</td>
<td>181 (80.8%)</td>
<td>1760 (51.5%)</td>
</tr>
<tr>
<td>Female</td>
<td>1462 (96.2%)</td>
<td>0</td>
<td>121 (12.9%)</td>
<td>43 (19.2%)</td>
<td>1625 (47.5%)</td>
</tr>
<tr>
<td>TransMale</td>
<td>5 (0.3%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (0.1%)</td>
</tr>
<tr>
<td>TransFemale</td>
<td>5 (0.3%)</td>
<td>24 (3.2%)</td>
<td>1 (0.1%)</td>
<td>0</td>
<td>30 (0.9%)</td>
</tr>
<tr>
<td>Race [n (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1156 (76.3%)</td>
<td>417 (56.2%)</td>
<td>388 (41.5%)</td>
<td>120 (53.8%)</td>
<td>2080 (60.9%)</td>
</tr>
<tr>
<td>Coloured</td>
<td>308 (20.3%)</td>
<td>65 (8.8%)</td>
<td>258 (27.6%)</td>
<td>74 (33.2%)</td>
<td>705 (20.7%)</td>
</tr>
<tr>
<td>White</td>
<td>40 (2.7%)</td>
<td>239 (32.2%)</td>
<td>252 (27.0%)</td>
<td>24 (10.8%)</td>
<td>555 (16.3%)</td>
</tr>
<tr>
<td>Indian</td>
<td>11 (0.7%)</td>
<td>10 (1.4%)</td>
<td>36 (3.9%)</td>
<td>5 (2.2%)</td>
<td>62 (1.8%)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>11 (1.5%)</td>
<td>0</td>
<td>0</td>
<td>11 (0.3%)</td>
</tr>
<tr>
<td>Housing [n (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeless</td>
<td>67 (4.4%)</td>
<td>18 (2.4%)</td>
<td>625 (66.8%)</td>
<td>116 (52.7%)</td>
<td>826 (24.2%)</td>
</tr>
<tr>
<td>Shelter</td>
<td>6 (0.4%)</td>
<td>5 (0.7%)</td>
<td>49 (5.2%)</td>
<td>19 (8.6%)</td>
<td>79 (2.3%)</td>
</tr>
<tr>
<td>Private Housing</td>
<td>1445 (95.2%)</td>
<td>716 (96.9%)</td>
<td>261 (27.9%)</td>
<td>85 (38.4%)</td>
<td>2506 (73.5%)</td>
</tr>
</tbody>
</table>
HBsAg, HCV and HIV prevalence, by population

- **Total Particpants (N)**
- **HBV positive**
- **HCV positive**
- **HIV positive**

Breakdown by Population

- **Total KP**: 3443
 - HBV positive: 437 (13%)
 - HCV positive: 1260 (37%)
 - HIV positive: 141 (4%)

- **SW**: 1531
 - HBV positive: 61 (4%)
 - HCV positive: 713 (47%)
 - HIV positive: 25 (3%)

- **MSM**: 747
 - HBV positive: 0
 - HCV positive: 320 (43%)
 - HIV positive: 18 (2%)

- **PWID**: 941
 - HBV positive: 48 (5%)
 - HCV positive: 403 (45%)
 - HIV positive: 198 (21%)

- **PWUD**: 224
 - HBV positive: 7 (3%)
 - HCV positive: 16 (7%)
 - HIV positive: 29 (13%)
Conclusions & recommendations

• South Africa has committed to End Viral Hepatitis by 2030
• National Guidelines for the Management of Viral Hepatitis approved (Sep ‘18)
• HCV transmitted through blood contact, infrequently during sex
• Sexual transmission increased:
 • Traumatic or prolonged sex
 • In context of (injecting) drug use and sex
• Local data confirms very high HCV prevalence among people recruited/identified as PWID, and higher among MSM
• Emerging programmatic data of injecting drug use among sex workers (Johannesburg and North West)
• Hepatitis C can be cured, but must be provided as part of a comprehensive package, that embraces a broader harm reduction approach
Thank you

Andrew Scheibe (andrew.scheibe@gmail.com)

Slides adapted from presentations by: Lorraine Moses, Mark Sonderup, Sarah Stacey, Kevin Rebe, Wendy Spearman, Nishi-Prabdial-Sing