Tuberculosis Diagnostics:
Moving towards the point-of-care

Paul Drain, MD, MPH, FACP
Assistant Professor, University of Washington
Visiting Scientist, Harvard Medical School

April 15, 2016
DISCLOSURE

The following planner/speaker has reported a relevant financial relationship with a commercial interest:

- None.
Outline

• Overview of POC Diagnostics
• TB Pathogen Biomarkers
• Host Biomarkers for TB
• Conclusion
POC Diagnostics - History

1957 – Urine dipstick for albumin, blood, and acetone

1962 – First rapid test to measure blood glucose1

1993 – Small portable devices measure multiple serum electrolytes2,3

2002 – “Medical test conducted at or near the site of patient care”4

2012 – First POC test for a human genetic allele5

POC Diagnostics – Scope & Settings

<table>
<thead>
<tr>
<th>Disease or Specialty</th>
<th>Diagnostic Point-of-care Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiology</td>
<td>Creatine Kinase-MB; Troponin I; Troponin T; Brain Natriuretic Peptide; N-Terminal Prohormone of Brain Natriuretic Peptide; Human-type Fatty Acid Binding Protein; Myosin Light Chain-1; Myoglobin</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>Glucose; Hemoglobin A1c; Urine Microalbumin Cholesterol; C-reactive Protein; Lactate</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>Fecal Occult Blood; Liver Function Tests</td>
</tr>
<tr>
<td>Hematology</td>
<td>Hemoglobin; Prothrombin time; D-dimer</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>HIV Antigen; HIV Antibody; CD4 T cell count</td>
</tr>
<tr>
<td>Infectious Diseases (non-HIV)</td>
<td>Group A Strep; Influenza A & B; Parainfluenza; Respiratory Syncytial Virus; Syphilis; Chlamydia; Falciparum-Malaria; Hepatitis C; Tetanus; Tuberculosis; Cryptococcus; Visceral Leishmaniasis; African Trypanosomiasis</td>
</tr>
<tr>
<td>Nephrology</td>
<td>Urinalysis; Urine Microalbumin; Serum Creatinine</td>
</tr>
<tr>
<td>Neurology</td>
<td>Nerve Conduction Device</td>
</tr>
<tr>
<td>Obstetrics</td>
<td>Pregnancy and Ovulation Prediction Tests</td>
</tr>
<tr>
<td>Pulmonology</td>
<td>Airflow Meters</td>
</tr>
<tr>
<td>Medical Settings</td>
<td>Commonly Used Point-of-care Test</td>
</tr>
<tr>
<td>Emergency Room</td>
<td>Serum Electrolytes; Medication Levels; Drugs of Abuse; Blood Alcohol Level; Troponin-I; Troponin-T; Lactate; Arterial Blood Gas</td>
</tr>
<tr>
<td>Intensive Care Unit</td>
<td>Serum Electrolytes; Ionized Calcium; Magnesium; Arterial Blood Gas; Blood pH; Glucose; Lactate; Hemoglobin; Prothrombin Time</td>
</tr>
<tr>
<td>Primary Care Clinic</td>
<td>Urinalysis; Pregnancy Test; Group A Strep; HIV Antibody; Fecal Occult Blood</td>
</tr>
</tbody>
</table>

Drain PK et al., Lancet Infectious Diseases, 2013.
Figure: Estimated annual research and global market for point-of-care diagnostics
The annual number of citations was determined by a customised search in the PubMed database for the term “point-of-care test”. The estimated global market data were provided by Visiongain.¹¹

Rapid Diagnostic Test for HIV/AIDS

2002 – First rapid HIV test using finger prick

2006 – CDC recommends routine HIV screening in US health care settings

2007 – WHO/UNAIDS recommend routine HIV screening in health care settings

2012 – First rapid HIV test for oral fluid home test

From 2010 to 2014, used to test **600 million adults** in **122 low- and middle-income countries**

Lab-NAT: laboratory-based nucleic acid testing; POC-NAT: nucleic acid testing at point-of-care; CLIA: chemiluminescence immunoassay; ECL: electrochemiluminescence immunoassay; EIA: enzyme immunoassay; WB: Western blot; RDT: rapid diagnostic test.
Evaluation of POC Diagnostics

1. Diagnostic Accuracy
 – Sensitivity/Specificity
 – Likelihood ratio
 – Area under receiver operating curve

2. Clinical Effectiveness
 – Time to therapy
 – Retention in care
 – Survival

3. Cost Analyses

4. Cost-Effectiveness Analysis

Drain PK et al., Lancet Infectious Diseases, 2013.
Rapid Diagnostic Test for HIV/AIDS

Accuracy – ~98% sensitive-specific
Rapidity – 20 minutes
Accessibility – Lateral flow assay; Finger prick whole blood
Cost – ~$2/test
POC Diagnostics – Summary

- POC diagnostics are rapidly emerging and evolving
- Potential for real clinical impact, particularly in primary care clinics and community/outreach
- Trade-offs with Accuracy, Rapidity, Accessibility, Cost
- Adoption of a POC test will not always translate to clinical impact or cost-effective results
Outline

• Overview of POC Diagnostics

• TB Pathogen Biomarkers
 – Xpert MTB/Rif
 – Urine LAM

• Host Biomarkers for TB

• Conclusion
History of TB Diagnostics

1821 – Laennec invented **stethoscope** and described utility in diagnosing TB
1882 – Koch presented TB bacilli as the infectious agent of TB on March 24
1895 – Roentgen invented **chest X-ray** and used to track TB progression
1890s – Franz Ziehl/Friedrich Neelson developed **acid-fast stain** for TB
1908 – Mantoux developed **tuberculin skin test** for latent TB
1936 – **Solid culture** introduced to grow and identify TB

In 2010, ~53% of clinics in Africa had access to Mycobacterial culture*

1980 – Liquid culture
2008 – Line probe assay
2010 – **Xpert MTB/RIF assay**
2011 – **Rapid LAM assay**

Xpert MTB/RIF assay

Accuracy

- Cochrane Review (27 studies, 9,557 people)\(^7\)
 - Pooled - sensitivity 89%; specificity 99%
 - HIV+ - sensitivity 79%
 - Smear-neg - sensitivity 67%

Rapidity – ~2 hours

Accessibility – Unprocessed sputum,
 Requires electricity,
 WHO endorsed

Cost – $5,000-20,000/machine,
 $10-15/cartridge (subsidized)

By July 2015:
 - Over 4,000 GeneXpert Systems in use worldwide
 - 13 million Xpert MTB/RIF cartridges shipped

Xpert MTB/RIF assay

- FIND (Foundation for Innovative New Diagnostics) Study\(^2\)
 - 6,648 patients with suspected TB in 6 countries (2009/10)
 - Performed same-day Xpert, smear microscopy, and TB culture

Real-world TB Diagnostics in Durban (n=414)

Figure 1. Median time between consecutive events from sputum specimen collection to a clinician’s receipt of test results, for AFB and Xpert tests.
Reason for starting TB therapy (N=414)

AFB-positive
- Clinical: 68%
- Xpert or AFB: 9%
- AFB-positive: 18%
- Xpert-positive: 5%

Xpert-positive
- Clinical: 30%
- Xpert or AFB: 6%
- AFB-positive: 27%
- Xpert-positive: 37%

Xpert in South Africa

• EXTEND Trial\(^8\)
 – 4,656 patients (62% HIV+) with suspected TB in South Africa
 – Randomized to central lab-based testing with 1 Xpert vs. 2 smear microscopy tests (40 clinics, 20 labs)
 – Primary Outcome – Treatment Initiation
 – Results
 • No difference in rate of Treatment Initiation
 • Mortality was same between study arms
 – Study Conclusion:
 • Xpert in central lab did not improve clinical diagnosis
 • Scale up of a new diagnostic tool requires a strong health system

• A real-word implementation of Xpert based on empiric data from Western Cape, South Africa was not cost-effective\(^9\)
Xpert in South Africa

• TB-NEAT Study
 – Randomized, “pragmatic” clinical trial in 4 African countries
 – 1,502 patients presenting with TB-related symptoms
 – Nurse-led diagnosis of Xpert vs. sputum-smear microscopy
 – Xpert testing done a clinical point-of-care
 – Primary Outcome – patient morbidity at 2- and 6- months
 – Results:
 • Xpert had greater diagnostic sensitivity (83% vs. 50%)
 • Xpert led to more same-day Rx initiation (23% vs. 15%)
 • By 2-months – Rx rate was same in both groups (43% vs. 42%)
 • Primary outcome (morbidity) had no difference b/n study arms

Conclusion: Too much empirical treatment among smear-neg
(i.e. didn’t trust negative smear microscopy result)

Lessons from Xpert

• Adoption of a POC test may not always translate to clinical impact or cost-effective results
• Location and Comparison for a POC test matters
• But, how do we assure quality control and oversight of clinic-based POC testing?
Lipoarabinomannan (LAM)

- Molecular weight is 17.3 KDa, comprises ~60-70% of the *M. tuberculosis* cell wall
- Released from metabolically active or degenerating bacteria, and secreted from infected alveolar macrophages
- LAM can be recovered from *in vitro* cultures of *M. tuberculosis*
- Detectable in serum and excreted in urine of people with active TB disease

Arrival of Urine LF-LAM Assay

Format – rapid immunochromatographic assay

Volume – 60 microliters of urine

Time – 25 minutes

Accessibility – Not sputum-based, no electricity, no machine

Cost – $3.00/test

Alere Determine™ TB LAM Ag Reference Scale Card

- Hold the card alongside the patient window and read the result
- Store the card in the kit pouch away from direct light and heat
- Do not use the card beyond the expiration date

Positive

Negative
Urine LAM Study #1

Study Design:
- Prospective clinic-based study in Durban
- LAM test performed by nurses at clinical POC
- Gold standard: Sputum TB culture

Cohort:
- 360 newly-diagnosed HIV+ (med. CD4 182/mm³)

Results:

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine LAM</td>
<td>28% (18-41)</td>
<td>90% (86-93)</td>
</tr>
<tr>
<td>Sputum AFB</td>
<td>18% (10-30)</td>
<td>95% (92-98)</td>
</tr>
</tbody>
</table>

Drain PK et al. BMC Infect Dis, 2014.
Urine LAM Study #2

Study Design:
- Prospective clinic-based study in Durban
- LAM test performed by nurses at clinical POC
- Gold standard: Sputum TB culture

Cohort:
- 320 newly-diagnosed HIV+ (med. CD4 248/mm3)

Results:

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Sputum AFB Smear</td>
<td>15</td>
<td>99</td>
</tr>
<tr>
<td>Urine LAM – Test #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥“faint”</td>
<td>41</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 >100</td>
<td>24% (9-45%)</td>
<td>95% (91-98%)</td>
</tr>
<tr>
<td>CD4 <100</td>
<td>56% (35-75%)</td>
<td>80% (64-91%)</td>
</tr>
<tr>
<td>5+</td>
<td>6</td>
<td>98</td>
</tr>
</tbody>
</table>

Urine LAM Study #3

Study Design:
- Prospective hospital-based study in Durban
- Gold standard: Sputum TB culture

Cohort:
- 90 TB suspects (93% were HIV+; med. CD4 182/mm3)
- All patients started on anti-TB therapy for 6 months
- Urine LAM testing at baseline, 2-months, and 6-months
- All patients followed for ≥3 years to assess mortality

Results:

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Sputum AFB Smear</td>
<td>21 (11-34)</td>
<td>94 (80-99)</td>
</tr>
<tr>
<td>Rapid Urine LAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1+ score</td>
<td>42 (29-56)</td>
<td>85 (68-95)</td>
</tr>
<tr>
<td>≥2+ score</td>
<td>23 (13-36)</td>
<td>97 (84-100)</td>
</tr>
<tr>
<td>≥3+ score</td>
<td>16 (8-28)</td>
<td>100 (89-100)</td>
</tr>
<tr>
<td>≥4+ score</td>
<td>12 (5-24)</td>
<td>100 (89-100)</td>
</tr>
<tr>
<td>5+ score</td>
<td>7 (2-17)</td>
<td>100 (89-100)</td>
</tr>
</tbody>
</table>
Comparison of Urine LF-LAM Studies

<table>
<thead>
<tr>
<th>Clinic-based Studies (asymptomatic screening)</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawn, Retrosp., New HIV+, Cape Town</td>
<td>28 (19-39)</td>
<td>99 (97-100)</td>
</tr>
<tr>
<td>Drain, Prosp., New HIV+, Durban – study #1</td>
<td>28 (18-41)</td>
<td>90 (86-93)</td>
</tr>
<tr>
<td>Drain, Prosp., New HIV+, Durban – study #2</td>
<td>41 (28-55)</td>
<td>92 (89-95)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital-based Studies (symptomatic diagnostic)</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter, Retrosp., HIV+ TB suspects, Cape Town</td>
<td>66 (57-74)</td>
<td>66 (57-73)*</td>
</tr>
<tr>
<td>Dorman, Prosp., HIV+ TB suspects, SA/Uganda</td>
<td>62 (57-67)</td>
<td>78 (75-81)</td>
</tr>
<tr>
<td>Van Rie, HIV+, extrapulm TB suspects, Jo-burg</td>
<td>69 (56-82)</td>
<td>92 (88-96)</td>
</tr>
<tr>
<td>Shah, Retrosp., HIV+ TB suspects, Uganda</td>
<td>63 (53-72)</td>
<td>88 (80-93)</td>
</tr>
<tr>
<td>Drain, Retrosp., HIV+ TB suspects, Durban</td>
<td>42 (29-56)</td>
<td>85 (68-95)</td>
</tr>
</tbody>
</table>

* Specificity increased to 90% (82-95%) when using a non-TB control group.
WHO Recommendation on Urine LF-LAM Assay

1. LF-LAM may be used to assist in the diagnosis of TB in HIV-positive adult inpatients with signs or symptoms of TB (pulmonary and/or extrapulmonary) who have a CD4 cell count ≤100 cells/µL, or HIV-positive patients who are seriously ill* regardless of CD4 count or with unknown CD4 count (conditional recommendation; low quality of evidence).

- This recommendation also applies to HIV-positive adult outpatients with signs and symptoms of TB (pulmonary and/or extrapulmonary) who have a CD4 cell count less than or equal to 100 cells/µL, or HIV-positive patients who are seriously ill regardless of CD4 count or with unknown CD4 count, based on the generalization of data from inpatients.
- This recommendation also applies to children, based on the generalization of data from adults while acknowledging very limited data and concern regarding the low specificity of the LF-LAM assay in children.

2. LF-LAM should not be used as a screening test for TB (strong recommendation; low quality of evidence)

* “seriously ill” is defined based on four danger signs: respiratory rate > 30/min, temperature >39 C, heart rate >120/min and unable to walk unaided.
Randomized, pragmatic trial

- 2,659 HIV+, hospitalized patients with suspected TB
- Randomized to urine LAM plus routine TB testing (AFB smear, Xpert, culture) versus routine TB testing (10 hospitals)
- Primary Outcome – 8-week all-cause mortality
- Results
 - LAM group – 21% mortality (261 patients)
 - No LAM group – 25% mortality (317 patients)
- Study Conclusion:
 - LAM testing had an absolute mortality reduction of 4%
 - Likely to benefit patients presenting with severe illness
Clinic-based LAM Implementation

- Clinic-based urine LAM screening at HIV diagnosis predicts mortality in a TB-endemic region

Drain PK, et al. under review
Summary of Urine LAM

• Advantages
 – Can be conducted at clinical POC by nurses
 – Non-sputum based (safer for HCWs)
 – Simple LFA with no machinery/electricity
 – Diagnose extrapulmonary TB
 – Applicable for diagnosing children
 – Marker for treatment response
 – Inexpensive
 – Good Diagnostic Specificity
 – Better among TB-suspects, high bacillary load, sicker pts

• Disadvantages
 – Low/Moderate Diagnostic Sensitivity
Outline

• Overview of POC Diagnostics

• TB Pathogen Biomarkers

• Host Biomarkers for TB
 – C-reactive protein
 – Transcriptional Signature

• Conclusion
Rapid TB Diagnostics

Diagnostic Tests

“Rule IN” test
(high specificity)

- AFB smear microscopy
- Urine LAM
- Xpert MTB/RIF
- other nucleic acid tests

Screening Tests

“Rule OUT” test
(high sensitivity)

- Symptom screening
- C-reactive protein
- D-dimer, haptoglobin
- Many cytokines, others
Rapid C-reactive Protein (CRP)

Accuracy – sensitivity ~90%; spec ~70%

Rapidity – 10 minutes

Accessibility – Finger prick whole blood assay with a small portable device

Cost – $3.50/test
Hospital-based CRP Study

- Prospective study at Edendale Hosp., Pietermaritzburg
- 90 TB-suspects; All HIV+ (med. CD4 177/mm3)
- Nurses performed rapid CRP on finger prick whole blood; obtained lab-based CRP test
- All patients received independent nurse and physician assessments

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Rapid C-reactive protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP ≥10 mg/l</td>
<td>95 (83-99)</td>
<td>51 (36-66)</td>
</tr>
<tr>
<td>CRP ≥25 mg/l</td>
<td>77 (61-89)</td>
<td>73 (58-85)</td>
</tr>
<tr>
<td>CRP ≥50 mg/l</td>
<td>59 (42-74)</td>
<td>87 (73-95)</td>
</tr>
</tbody>
</table>
Host Transcriptional Signature

An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis

Matthew P. R. Berry¹, Christine M. Graham¹, Finlay W. McNab¹, Zhaohui Xu², Susannah A. A. Bloch³, Tolu Oni⁴, Katalin A. Wilkinson⁴, Romain Banchereau⁵, Jason Skinner⁶, Robert J. Wilkinson⁷, Charles Quinn⁸, Derek Blankenship⁹, Ranju Dhawan⁹, John J. Cush⁹, Asuncion Mejias¹⁰, Virginia Pascual¹⁰, Jacques Banchereau⁴, Damien Chaussabel⁴ & Anne C. Alon¹¹

Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa

Suzanne T. Anderson, Ph.D., M.R.C.P.C.H., Myrsini Kaforou, M.Phil.
A blood RNA signature for tuberculosis disease risk: a prospective cohort study

Host Transcriptional Signature
Outline

• Overview of POC Diagnostics
• TB Pathogen Biomarkers
• Host Biomarkers for TB
• Conclusion
GeneXpert® Omni

- Developed by Cepheid and FIND
- Announced July 28, 2015
- Small (23 cm tall)
- Lightweight (1 kilogram)
- Easy to use
- Powered by a rechargeable battery
- Wireless connectivity

1. Agree on regulatory assurances and QC measures to ensure oversight for maintaining the accuracy of diagnostic testing

2. Understand whether clinic-based testing might place additional strain on laboratory system, or whether POC testing could help offload the burden on laboratory workers

3. Develop clear guidance on the adoption of novel point-of-care tests
Acknowledgements

• Research Team:
 – Sabina Govere
 – Meighan Krows
 – Esihle Mathontsi
 – Grace Muwisa
 – Simo Nkilana
 – Tivani Mashamba

• International Clinical Research Center/UW:
 – Connie Celum
 – Jared Baeten
 – Ruanne Barnabas

• Collaborators in South Africa:
 – Yunus Moosa, UKZN/King Edward Hospital
 – Pravi Moodley, UKZN
 – Doug Wilson, UKZN/Edendale Hospital
 – Slim Abdool-Karim, CAPRISA
 – Nesri Padayatchi, CAPRISA
 – Nigel Garrett, CAPRISA
 – Kogie Naidoo, CAPRISA
 – Hilary Thulare, AHF/IThembalabantu Clinic
 – Al Leslie, K-RITH
 – Jacques Grosset, K-RITH/Johns Hopkins U.

• Collaborators in U.S.:
 – Ingrid Bassett, MGH/Harvard
 – Kenneth Freedberg, MGH/Harvard
 – Mehmet Toner, MGH/Harvard
 – Bruce Walker, MGH/Harvard
 – Bill Rodriguez, Daktari Diagnostics Inc.
 – Dan Kuritzkes, BWH/Harvard
 – Wafaie Fawzi, Harvard School Public Health
 – Bill Powderly, Washington University
 – Alex Revzin, U. California – Davis
 – King Holmes, U. Washington
 – Bill Bishai, Johns Hopkins U.

• Funding Support:
 – Harvard T32 Program for AIDS Clinical Research Training (T32 AI007433)
 – NIH Fogarty International Clinical Research Program (R24 TW007988)
 – NIH National Institute of Allergy and Infectious Diseases (K23 AI108293-01)
 – Harvard University Center for AIDS Research (CFAR) (P30 AI060354)
 – Infectious Disease Society of America (IDSA) Merle Sande Award
 – HIV Medicine Association (HIVMA)
 – KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH)
 – Harvard Global Health Institute
 – NIH Loan Repayment Program
 – Partners Healthcare, Center of Expertise in Global & Humanitarian Health
 – Massachusetts General Hospital, Medical Practice Evaluation Center
 – Massachusetts General Hospital, David Brudnoy Scholar Award
 – Massachusetts General Hospital, Executive Committee on Research
 – Brigham and Women’s Hospital, Biomedical Research Institute