DolPHIN-1: Randomised controlled trial of dolutegravir (DTG)-versus efavirenz (EFV)-based therapy in mothers initiating antiretroviral treatment in late pregnancy

Research funding and drug donation for DolPHIN-1 was provided by ViiV Healthcare
Background

- Around 1.5M HIV+ women become pregnant each year

- Effective and timely ART has averted 1.6M infant infections

- In S Africa, around a fifth of HIV+ pregnant women initiate ART late, in 3rd trimester (T3)

- Late initiation associated with 7-fold increased risk of MTCT, and doubling of infant mortality in first year

Hypothesis:
Faster VL declines with DTG may reduce MTCT at birth & during breastfeeding (BF) in HIV+ mothers initiating ART in T3

Meyers et al. PLoS ONE 2015;10(9): e0138104
DolPHIN-1: Dolutegravir in Pregnant HIV mothers and their Neonates
NCT022245022

- HIV+ pregnant mums initiating ART in T3 (28-36w gestation)
 ≥18y, no ARVs in preceding 6m (no previous INSTIs), no depression, Hb ≥ 8g/dL, eGFR ≥ 50, ALT ≤ 5xULN, no active HBV
- Randomised 1:1 to receive DTG vs EFV until 2w PP
 plus TDF/3TC (Uganda) or TDF/FTC (S Africa). DTG (50mg/d), EFV (600mg/d)
- Primary endpoint: maternal PK of DTG
- Secondary endpoints: plasma VL <50 copies (or undetectable) at PP visit (0-2w PP), safety and tolerability, PK in cord blood and BM
DoPHIN-1 Enrolment & Baseline Demographics

- **60 HIV+ mothers enrolled:** DTG (29), EFV (31)
- Equally split across both study sites
- Median gestation 31w
- No difference in baseline VL, CD4, previous obstetric history, gestation, BMI
- High use of traditional medicines noted

Baseline Median (Range)

<table>
<thead>
<tr>
<th></th>
<th>DTG (n=29)</th>
<th>EFV (n=31)</th>
<th>Total (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>27 (19-42)</td>
<td>25 (19-35)</td>
<td>26 (19-42)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>68 (45-103)</td>
<td>65 (48-119)</td>
<td>66 (45-119)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26 (19-40)</td>
<td>25 (21-46)</td>
<td>26 (19-46)</td>
</tr>
<tr>
<td>Est gestation (w)</td>
<td>31 (27-35)</td>
<td>30 (27-36)</td>
<td>31 (27-36)</td>
</tr>
<tr>
<td>HIV VL log₁₀ copies</td>
<td>4 (2-5)</td>
<td>4 (3-6)</td>
<td>4 (2-6)</td>
</tr>
<tr>
<td>CD4 (cells/mm³)</td>
<td>343 (41-712)</td>
<td>466 (32-932)</td>
<td>394 (32-932)</td>
</tr>
<tr>
<td>HBsAg +ve *</td>
<td>0</td>
<td>2 (6.5%)</td>
<td>2 (3.3%)</td>
</tr>
<tr>
<td>Herbal/traditional medicines</td>
<td>5 (17.2%)</td>
<td>8 (25.8%)</td>
<td>13 (21.7%)</td>
</tr>
</tbody>
</table>

* missing data DTG (2) EFV (1)
Results – Maternal Plasma PK (T3 versus PP)

<table>
<thead>
<tr>
<th>DTG ng/mL (range)</th>
<th>T3 * (n=28)</th>
<th>PP * (n=27)</th>
<th>GMR (90%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>0-24h</sub> (ng*h/mL)</td>
<td>35,322 (19,196 – 67,922)</td>
<td>37,575 (14,933 – 59,633)</td>
<td>0.95 (0.74 – 1.23)</td>
</tr>
<tr>
<td>C<sub>max</sub> (ng/mL)</td>
<td>2,435 (1,462 – 3,986)</td>
<td>2,843 (1,398 – 4,224)</td>
<td>0.91 (0.82 – 1.01)</td>
</tr>
<tr>
<td>C<sub>trough</sub> (ng/mL)</td>
<td>642 (188 – 3,088)</td>
<td>696 (204 – 1,443)</td>
<td>0.93 (0.76 – 1.14)</td>
</tr>
<tr>
<td>DTG ≤ MEC (324ng/mL)</td>
<td>9/28 (32%)</td>
<td>6/27 (22%)</td>
<td></td>
</tr>
</tbody>
</table>

* 1 subject with undetectable levels throughout excluded

- Rich PK sampling in T3 and PP
- PP sampling (2-18d; median 8d) does not reflect return to normal physiology; exposures not significantly different from T3
- All but one [DTG] above 64 ng/mL (PA-IC₉₀)
- In T3, 9/28 (32%) of [DTG] at or below 324 ng/mL (MEC)
- Cord:maternal blood ratio = 1.21 (0.51 – 2.11) [median (range)]

Min et al, AIDS 2011;25:1737
Results – PK in Breast Milk and Breastfeeding Infants

Breast Milk
- sampled at maternal plasma C_{max} and C_{trough}
- Geometric mean BM_{max} 70 (58 – 83) ng/mL; BM_{trough} 24 (19 – 29) ng/mL
- $BM:MP$ at C_{max} and C_{trough} = 0.03 (3%)

Infant Plasma
- sampled at maternal plasma C_{trough}; feed mandated at C_{max} and infant sampling 1h later
- Geometric mean IP_{max} 111 (50 – 172) ng/mL; IP_{trough} 87 (47 – 127) ng/mL
- $IP:MP_{\text{max}}$ = 0.05 (0.02 – 0.07) ; $IP:MP_{\text{trough}}$ = 0.12 (0 – 0.26)
Results: DTG Washout following Cessation

MP vs Breast Milk
- Rapid washout following DTG cessation

MP vs Infant Plasma
- Slow washout of DTG in infants following cessation of DTG in mother
- Likely reflects accumulation from BF (+/- residual transplacental accumulation) due to decreased glucuronidation in the neonate
Results – Viral load at Post-partum Visit

- By ITT, significantly greater proportion of DTG subjects achieved virological suppression at PP (2w) visit
- Median time to HIV-1 RNA <50 copies was approximately halved with DTG compared to EFV
- 1 mother in the DTG arm had UD DTG concentrations, with no VL response; another with [DTG] < 64 ng/mL experienced virological rebound (3 class drug resistance from baseline sample)

<table>
<thead>
<tr>
<th>HIV-1 RNA level at PP visit</th>
<th>ITT (M=F)</th>
<th>DTG (N = 29)</th>
<th>EFV (N = 31)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td><50 copies/mL *</td>
<td>20 (69.0%)</td>
<td>12 (38.7%)</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>≥50 copies/mL</td>
<td>9 (31%)</td>
<td>19 (61.3%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* <50 copies/mL or UD (Roche Ampliprep Cobas Taqman HIV-1 2.0)
** Pearson Chi-squared
Includes individuals missing or discontinued by visit

NRTI: M41L, L210W, T215Y, M184V
NNRTI: Y188L
PI: M46I, I84V, I54V, V32I, V82A, L33F, K43T
Safety – Maternal outcomes

<table>
<thead>
<tr>
<th></th>
<th>DTG (N = 29)</th>
<th>EFV (N = 31)</th>
<th>Total (N = 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given birth</td>
<td>29 (100.0%)</td>
<td>31 (100.0%)</td>
<td>60 (100.0%)</td>
</tr>
<tr>
<td>Mode of delivery, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>25 (86.2%)</td>
<td>21 (67.7%)</td>
<td>46 (76.7%)</td>
</tr>
<tr>
<td>C-section</td>
<td>4 (13.8%)</td>
<td>10 (32.3%)</td>
<td>14 (23.3%)</td>
</tr>
<tr>
<td>Experiencing at least 1 adverse event Grade ≥ 3</td>
<td>2 (6.9%)</td>
<td>0</td>
<td>2 (3.3%)</td>
</tr>
</tbody>
</table>
| Experiencing at least 1 serious adverse event | 2 (6.9%)
| | 1 (3.2%)* | | 3 (5.0%) |

Maternal AEs and SAEs since starting ART (i.e. includes initial EFV-based ART in mothers subsequently randomised to DTG)

§ 1 case of Haemoglobin decreased (not related);
1 case with Malaria + Urinary tract infection (possibly related), Stillbirth (not related), and ALT+ bilirubin increased + Hypokalaemia + Hyponatraemia (possibly related)
* 1 case of Hypertension + Pre-eclampsia (unlikely related)
Safety – Infant outcomes

<table>
<thead>
<tr>
<th></th>
<th>DTG (N = 29)</th>
<th>EFV (N = 31)</th>
<th>Total (N = 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome of delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal healthy baby</td>
<td>28 (96.6%)</td>
<td>29 (93.5%)</td>
<td>57 (95.0%)</td>
</tr>
<tr>
<td>Stillbirth§</td>
<td>1 (3.4%)</td>
<td>-</td>
<td>1 (1.7%)</td>
</tr>
<tr>
<td>Congenital malformation</td>
<td>-</td>
<td>2 (6.5%)</td>
<td>2 (3.3%)</td>
</tr>
<tr>
<td>of which syndactyly§</td>
<td>-</td>
<td>1 (3.2%)</td>
<td>1 (1.7%)</td>
</tr>
<tr>
<td>Multiple *</td>
<td>-</td>
<td>1 (3.2%)</td>
<td>1 (1.7%)</td>
</tr>
<tr>
<td>Gestation age at birth, weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median (range)</td>
<td>39 (35-43)</td>
<td>38 (34-42)</td>
<td>38 (34-43)</td>
</tr>
<tr>
<td>Length of baby, cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median (range)</td>
<td>51 (44-58)</td>
<td>50 (33-55)</td>
<td>50 (33-58)</td>
</tr>
<tr>
<td>Weight of baby, kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median (range)</td>
<td>3 (2-4)</td>
<td>3 (2-4)</td>
<td>3 (2-4)</td>
</tr>
<tr>
<td>Experiencing at least 1 serious adverse event</td>
<td>-</td>
<td>3 (9.7%)†</td>
<td>3 (5.0%)</td>
</tr>
</tbody>
</table>

§ Not related

* Not related.

Multiple skeletal and limb defects (talipes, multiplex arthrogryposis, developmental hip dysplasia, limb hyperextension)

Cardiac defects (Atrial septal defect, Persistent left superior vena cava) + cleft palate, hyporeflexia (? Larsen or TARP syndrome)

Note: The infant was also pre-term/small for gestational age, and had congenital syphilis.

† 2 cases with congenital malformations and 1 case of neonatal sepsis (not related)
In this pilot study, a significantly greater proportion of mothers initiating ART late in pregnancy achieved HIV-1 RNA <50 copies/mL with DTG- compared to EFV- based regimens.

DTG exposures in T3 were relatively low. In-utero accumulation of DTG was high (121%).

Breast milk accumulation of DTG was 3% with higher exposures in breastfed infants, likely due to reduced drug clearance.

Upon cessation, DTG was rapidly eliminated from breast milk; however infant washout was prolonged.

Safety of DTG and EFV was comparable; however evaluation is limited by small sample size, relatively short follow-up and by prior EFV use in all DTG mothers initiating ART.

DolPHIN-2 (NCT03249181) is a randomised comparison of DTG vs EFV initiation in third trimester (28w – labour; N = 250).
Acknowledgements

We are grateful to all the mothers and families who participated in DolPHIN-1

University of Liverpool
Catriona Waitt
Helen Reynolds
Eva-Maria Hodel
Laura Else
Aliu Amara
Joshua Gini
Sujan Dilly Penchala
Laura Dickinson
Henry Pertinez
Adeniyi Olagunju
David Back

Infectious Diseases Institute
Mohammed Lamorde
Kenneth Kintu
Stephen Walimbwa
Julian Kaboggoza
Eva Laker
Byamugisha Josaphat
Andrew Kambugu
Pauline Byakika

University of Cape Town
Catherine Orrell
Landon Myer
Julie-Anne Coombs
Christie Heiberg
Ushma Mehta
Yashna Singh

Statistical Support
Andrew Hill
Bryony Simons

TSC / IDSMB
Graham Taylor
Mark Mirochnick
Helen McIlIameron
Polly Clayden

We are grateful to ViiV Healthcare for project funding and donation of DTG for DolPHIN-1