Parvovirus B19: ...an opportunist.

Dr Susan Louw
Haematopathologist
NHLS / WITS
Parvovirus B19: Virology:

• Discovered in 1975
• Single-stranded, protein encapsulated DNA virus
 – 5 596 nucleotides = small
 • 4 830: coding sequence
 – 2 structural proteins (VP1 & 2): = capsid
 – Non-structural protein (NS1): = replication
 • 383: terminal repeats in hairpin loops
• Replication
 – requires host cell DNA machinery
 – primarily in erythroblasts
• 3 distinct genotypes with variable clinical manifestations
• Persists lifelong in various tissues
Parvovirus B19: Virology:

• Parvovirus non-structural protein (NS1):
 – localises to nucleus of infected cells
 – cytotoxic to host cells
 • DNA nickase activity
 – Up-regulates expression of pro-inflammatory cytokines:
 • Interleukin 6 (IL-6)
 • Tumour necrosis factor α
 – induce apoptosis in erythroid cells
Parvovirus B19:
Virology:

• Cellular receptor: the glycosphingolipid blood group P antigen (Globoside 4 (Gb4)):
 – Widespread expression:
 • erythrocytes, platelets, granulocytes, lung, heart, synovium, liver, kidney, endothelium, placenta, foetal cells and vascular smooth muscle....
Parvovirus B19: Clinical manifestations

• Commonly causes:
 – Erythema infectiosum (Fifth disease)
 – Arthralgia
 – Foetal death (Hydrops foetalis)
 – Transient aplastic crisis
 • if RBC survival is shortened in
 - e.g. Sickle cell disease
 - **Persistent infection in immunocompromised**

• Less common manifestations
 – Neurological syndromes
 – Cardiac syndromes
 – Cytopenias (bone marrow infection)
 – Autoimmune diseases
Parvovirus B19: Epidemiology and transmission

- Transmission:
 - Respiratory aerosol spread from acutely infected
 - multiplies in throat → viraemia on day 6 → infection of erythroblasts in bone marrow
 - Mother-to-child
 - Blood products (heat and solvent resistant)

- Massive productive replication in erythroid progenitor cells
 - very high viral load in acute infection prior to a detectable immune response
 - Up to 10^{13} viral particles per ml of peripheral blood

- Occurs worldwide but restricted to humans
 - Seroprevalence increases with age
 - Up to 90% of adults
Parvovirus B19: Immune response

• In immune competent:

 – Virus capsid-specific IgM / IgG Abs produced:

 • Resolution of infection and neutralisation of virus

 – Lymphoproliferative responses:

 • Probably important in long-term control of the virus
Parvovirus B19: Immune response

In immune compromised e.g. HIV:

- New Parvo infection or reactivation
- Unable to produce neutralising antibodies → chronic infection with erythroblast lysis → chronic anaemia (pure red cell aplasia (PRCA))
- Anti-retroviral therapy (ART) with immune reconstitution →
 - decreased prevalence of Parvovirus associated PRCA
 - If infected: benign Fifth disease
- Dissociation between serological and molecular PCR results in HIV infected patients
 - inability of the immunocompromised to produce neutralising antibodies
 - immune response may be quantitatively and qualitatively altered
 - diagnostic genome detection on PCR is advocated
Pure red cell aplasia:

- Absence of maturing erythroid precursors in otherwise normocellular bone marrow
- Causes:
 - Idiopathic
 - Congenital
 - Acquired
 - Lymphoproliferative disorders
 - Neoplastic disorders e.g. Thymoma
 - Autoimmune diseases e.g. Systemic lupus erythematosus (SLE)
 - Pregnancy
 - Recombinant human erythropoietin
 - ABO-incompatible hematopoietic stem cell transplant
 - Myelodysplasia
 - Chronic parvovirus B19 infection
Parvovirus B19: Pure Red Cell Aplasia (PRCA):

Normal erythropoiesis: Parvovirus related PRCA:
Parvovirus B19 PRCA: Diagnosis:

• Clinical and routine blood tests
 – FBC Diff, RPI, haematinics etc.

• Serology
 – ELISA: IgG and IgM: **Unreliable in HIV**

• Polymerase chain reaction (PCR)
 – Sensitive
 – Contamination can occur
 – DNA detection in serum and various tissue samples
 – +ve extended periods: low levels of B19 DNA alone: **NOT** diagnose acute or ongoing infection: **clinical interpretation**

 • most primer pairs based detects geographically diverse B19 isolates **BUT** many primer pairs would not detect the V9 variant
 – Ideally 2 sets of primers should be used
Parvovirus B19 PRCA: Treatment

- Supportive blood transfusions at ~R1 684 per unit
 - Iron overload and blood scarcity
- Polygam (iVIG)
 - Example of a regimen:
 - Dose: ± 3 doses (1.3 ± 0.5 g/kg/dose)
 - BUT HB can correct with 1 dose
 - Haemoglobin improved after 80 ± 54 days
 - Side-effects: acute reversible renal failure and pulmonary oedema
 - 33.9% relapse rate at a mean of 4.3 months
 - ~ R 40 000 per course
- Anti-retroviral therapy (ART) with immune reconstitution
Teka Away message:

• Parvovirus co-infection in people living with HIV contributes to:
 – Morbidity
 – Mortality
 – Decreased quality of life
 – Add to cost of treatment and investigations

• Paucity of research and publications from SA....