Thinking about numbers: Mathematical models and the control of HIV

Brian Williams

WRHI, Johannesburg and SACEMA, Stellenbosch, South Africa

SA HIV Clinicians Society Conference 2016
Sandton, South Africa. 13–16 April 2016

The purpose of models is not to fit the data but to sharpen the question. Karlin, S.
Modelling for modellers

- Stay as close to the data as you can
- Put in as much biology as you can
- Keep it simple
Modelling for non-modellers

- Examine the data carefully
- Question all the assumptions
- Assume that the modellers know what they are doing
The case reproduction number

R_0

The number of secondary cases you get from one primary case of infection
Why is R_0 so important?

1. It tells us if things are getting better or worse
 \[R_0 > 1: \text{prevalence increases exponentially} \]
 \[R_0 < 1: \text{prevalence falls exponentially} \]

2. It tells us the magnitude of the control problem. If we reduce transmission by a factor of R_0 we will eventually eliminate the disease.

3. It tells us the expected prevalence if we do nothing and the vaccination coverage needed for elimination
 \[P = \frac{(R_0 - 1)}{R_0} \]

http://en.wikipedia.org/wiki/Basic_reproduction_number
HIV in Botswana
Trends, estimates and projections
4 stages of infection to get the right survival
Doubling time \(\approx 1.5 \) yrs
Life expectancy \(\approx 10 \) yrs
\(R_0 \approx 10/1.5 \approx 7 \)

Heterogeneity in risk
\[\lambda \rightarrow \lambda \left(1 - \frac{P}{P^*}\right) \]

Change in behaviour

Anti-retroviral therapy
Doubling time ≈ 1.5 yrs
Life expectancy ≈ 10 yrs
$R_0 \approx 10/1.5 \approx 7$

Heterogeneity in risk
$$\lambda \rightarrow \lambda \left(1 - \frac{P}{P^*}\right)$$

Change in behaviour

Initial prevalence
How infectious are people on ART?
Viral load and transmission

Attia 2009 AIDS; Gaolathe 2016 Lancet

Viral load/mL

Transmissions/yr

0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
10 100 1000 10000 100000 1000000 10000000

10 100 1,000 10,000 100,000 1,000,000

93% 3.4% 3.5%

97%

99.7%

Botswana

Virions/mL

Attia 2009 AIDS; Gaolathe 2016 Lancet
Constant effort

90-90-90 + Prevention
Botswana

Prevalence HIV & ART

Incidence & Mortality

P
I
M
A

Prevalence HIV & ART

Incidence & Mortality

1980 2000 2020 2040

Botswana
What does HIV do to TB?
TB and HIV: Gold Miners in South Africa

<table>
<thead>
<tr>
<th>Year Interval</th>
<th>HIV- %</th>
<th>HIV+ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-1994</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>1995-1997</td>
<td>1.1</td>
<td>5.9</td>
</tr>
<tr>
<td>1998-1999</td>
<td>1.1</td>
<td>9.4</td>
</tr>
</tbody>
</table>

IRR: ~10

No change

IRR: ~2

No change

Corbett *et al.* *Journal of Infectious Diseases* 2003; 188: 1156-63
Impact of HIV and ART on TB

Prevalence 1.1π 1.4π 1.8π 2.4π 1.06η
Incidence 1.1η 2.3η 4.6η 9.3η 1.3η

Three variable parameters: Incidence pre-HIV, rate of increase with HIV-progression, reduction in disease duration
Botswana

Cost of treatment and prevention

HC on ART
ART
Testing
HC not on ART
Deaths

US$1.5 Bn 2016 to 2030 or US$150 M p.a.
Impact of treatment and prevention in Mozambique

GOALS model ART
50% coverage
20% as infectious

My model ART
65% coverage
35% as infectious

Korenromp et al. PLOS 2015
Thank you