Routine 1st-line resistance testing in the current treatment era: now is not the time

Emily P. Hyle, MD MSc
Division of Infectious Diseases
Massachusetts General Hospital
Harvard Medical School

XXVII International Workshop on HIV Drug Resistance and Treatment Strategies
October 23rd, 2018

Supported by NHLBI (K01HL123349), NIAID (R01AI042006), and Claflin Distinguished Scholars Award
Financial disclosures

• I have no financial disclosures
Key points

• HIV DR testing can improve clinical outcomes but only after programmatic strengthening

• Rollout of DTG further reduces the benefits of routine HIV DR testing in the general population

• Resources can likely best be used by improving VL monitoring
Global objective

• To optimize the scale-up and sustainability of ART access and viral suppression worldwide to improve life expectancy and decrease transmissions

 1. Improve ART effectiveness and durability
 2. Utilize available resources efficiently
ART scale-up is unprecedented …

UNAIDS Global AIDS Update 2018
... Ongoing scale-up is still needed

UNAIDS/WHO estimates reported July 2018
Finding efficiencies in HIV care

PEPFAR 2018 Progress Report.
Roadmap

- Clinical impact of HIV DR testing
- Resource utilization
- Programmatic challenges
- Opportunity costs
Roadmap

- Clinical impact of HIV DR testing
- Resource utilization
- Programmatic challenges
- Opportunity costs
WHO regimen guidelines (July 2018)

1st Line
- EFV + 2 NRTI
- DTG + 2 NRTI

2nd Line
- DTG + 2 NRTI
- PI + 2 NRTI

3rd Line
- DTG (BID) + DRV/r (BID) + 1-2 NRTI

Start/switch regimen → Re-start regimen → INSTI genotype?

TLE initiation: no HIV DR testing

VL Monitoring

- **NNRTI-R 1st-line ART**
- **Suppressed 1st-line ART**
- **Failing 1st-line ART**
TLE initiation: HIV DR testing

HIV DR Test

VL Monitoring

- NNRTI-R 1st-line ART
- Suppressed 1st-line ART
- Failing 1st-line ART
- Suppressed 2nd-line ART
Can NNRTI-R virus suppress with EFV?

- 837 patients initiated TDF/FTC/EFV in rural KZN and had at least 1 VL in follow-up
- Overall, 94.5% suppressed at 12 months

<table>
<thead>
<tr>
<th>PDR</th>
<th>N=</th>
<th>Time to suppression (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PDR</td>
<td>765 (91%)</td>
<td>3.5</td>
</tr>
<tr>
<td>NNRTI-R</td>
<td>67 (9%)</td>
<td>4.1</td>
</tr>
<tr>
<td>NRTI/NNRTI-R</td>
<td>5 (<1%)</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Derache and Iwuji *et al.* CID 2018
Transmitted INSTI-R

• Very rare
• Not all INSTI-R mutations have clinical consequences
 – DTG will be active against many INSTI mutations

• Koulias et al. used simulation modeling to evaluate INSTI-R testing at ART initiation:
 – As long as 20% of transmitted INSTI-R mutations suppressed with DTG, it was not clinically beneficial or cost-effective to test before ART start in the US
 – Assumption: VL monitoring!

Koullias et al. CID 2017
HIV DR testing at 1st-line ART initiation

- So many tests!
 - Benefits a small percentage of PWH
 - Insufficient laboratory capacity
 - \textbf{Will add delays to ART start for everyone}

- Minimal clinical benefit for patients starting TLD
 - Low PDR
 - Some INSTI mutations will suppress on DTG

- Alternative method to assess for failure
 - VL monitoring

- Costly
TLE failure: no HIV DR testing

NNRTI-R 1st-line ART Suppressed 1st-line ART Failing 1st-line ART Suppressed 2nd-line ART
TLE failure: HIV DR testing

- **VL #1**: FF
- **VL #2**: FF
- **HIV DR Test**: FF
- **EAC**: FF
- **ART switch**: FF

- **NNRTI-R 1st-line ART**
- **Suppressed 1st-line ART**
- **Failing 1st-line ART**
- **Suppressed 2nd-line ART**
Benefits of HIV DR testing

• If susceptible virus:
 – Reduces unnecessary switch to later lines of ART
 • Monthly ART cost will be lower
 • Better tolerated ART regimens
 • Additional lines of ART reserved for future need

• If resistant virus:
 – Prompts appropriate regimen start/switch BUT
 • Genotype results must be interpreted
 • Someone must be empowered to make the switch
 • Next-line ART must be available
CEA: genotype at 1st-line ART failure

<table>
<thead>
<tr>
<th>Country</th>
<th>Life expectancy</th>
<th>Cost</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosen 2011 South Africa</td>
<td>NA</td>
<td>--</td>
<td>Cost-neutral</td>
</tr>
<tr>
<td>Levison 2013 South Africa</td>
<td>↑ ↑</td>
<td>↑ ↑</td>
<td>Cost-effective ($900/YLS)</td>
</tr>
<tr>
<td>Phillips 2014 Zimbabwe</td>
<td>↑ ↑</td>
<td>↑ ↑</td>
<td>Not cost-effective</td>
</tr>
</tbody>
</table>
CEA: genotype at failure

• No analyses published regarding genotype after failure on INSTI regimen

• Genotype testing was cost-neutral or CE
 – ~80% of patients fail ART with resistant virus
 – Unnecessary switches are costly bc 2nd-line ART is 2-5x more expensive than 1st-line ART
 – HIV DR testing prompts *appropriate* switches but must not create delays (Not CE if >5 months)

• HIV DR testing not CE
 – Benefits of PI-based ART for poorly adherent
 – Not all switch to 2nd-line, even with HIV DR test

TLE failure: HIV DR testing – reality?

NNRTI-R 1st-line ART Suppressed 1st-line ART Failing 1st-line ART Suppressed 2nd-line ART
HIV DR testing doesn’t solve inaction

• Why do patients fail 1st-line ART for prolonged periods of time?
 – Virologic failure goes unrecognized
 – Clinicians do not recommend 2nd-line despite VF
 – 2nd-line is not available (stockouts)
HIV DR testing doesn’t solve inaction

- Why do patients fail 1st-line ART for prolonged periods of time?
 - Virologic failure goes unrecognized
 - Improve VL monitoring
 - Clinicians do not recommend 2nd-line despite VF
 - Empower clinicians to advocate for 2nd-line ART after repeat VL remains detectable
 - 2nd-line is not available (stockouts)
 - Improve supply chains
Roadmap

Clinical impact of HIV DR testing

Resource utilization

Programmatic challenges

Opportunity costs
Test costs

• Usually described as “$XX/test”

• Such estimates rarely include many of the important contributors to what it takes to deploy a diagnostic test
Resource utilization

• Laboratory infrastructure
 – Capital costs
 – Maintenance costs

• Fixed versus marginal costs
 – Fixed: for test availability (machine, staff salaries, QC)
 – Marginal: per test (reagents, staff time)

• Additional costs
 – Transport of specimens
 – Communication of results with care providers
Resource utilization ≠ per test costs

<table>
<thead>
<tr>
<th>Cost component of POC-CD4</th>
<th>Mobile clinic</th>
<th>Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost for QC materials ($/day)</td>
<td>$0.43</td>
<td>$0.43</td>
</tr>
<tr>
<td>Machine start up (hours/day)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Salary ($/hour)</td>
<td>$14.67</td>
<td>$8.82</td>
</tr>
<tr>
<td>Salary cost for QC ($/day)</td>
<td>$7.33</td>
<td>$4.41</td>
</tr>
<tr>
<td>Total cost for QC ($/day)</td>
<td>$7.76</td>
<td>$4.84</td>
</tr>
</tbody>
</table>

Resource utilization ≠ per test costs

<table>
<thead>
<tr>
<th>Cost component of POC-CD4</th>
<th>Mobile clinic</th>
<th>Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost for QC materials ($/day)</td>
<td>$0.43</td>
<td>$0.43</td>
</tr>
<tr>
<td>Machine start up (hours/day)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Salary ($/hour)</td>
<td>$14.67</td>
<td>$8.82</td>
</tr>
<tr>
<td>Salary cost for QC ($/day)</td>
<td>$7.33</td>
<td>$4.41</td>
</tr>
<tr>
<td>Total cost for QC ($/day)</td>
<td>$7.76</td>
<td>$4.84</td>
</tr>
</tbody>
</table>

Roadmap

- Clinical impact of HIV DR testing
- Resource utilization
- Programmatic challenges
- Opportunity costs
Anticipated challenges with DR testing

• New algorithm needed for providers
 – Who will be trained to interpret genotype results?
 – Who will be empowered to switch regimens?

• Avoid re-centralization
• Do not divert resources from VL scale-up
• Ensure accessibility and affordability of 2nd-line

• Given challenges surrounding DTG, now is not the time to add program complexity
Roadmap

- Clinical impact of HIV DR testing
- Resource utilization
- Programmatic challenges
- Opportunity costs
Opportunity costs

• What will not be funded if routine HIV DR testing is started?

• Would scale-up of VL monitoring slow?
 – Only 10% of focus countries report ≥90% of PWH on ART with annual VL

• Would ART availability be compromised?
 – 48% of focus countries reported ART stock outs in past year

Future steps

• Ongoing improvement in programmatic flow
 – Consistent viral load monitoring
 – Increased switch to 2nd-line for patients failing 1st-line
 – Reduce stock outs

• Special populations
 – Children

• Surveillance \neq clinical decision-making
 – Further drug resistance data collected now to inform future guidelines

• Hope for the best, but anticipate the worst
 – Now is the time to develop a plan; simulation modeling can provide estimates and project outcomes
Key points

• HIV DR testing can improve clinical outcomes but only after programmatic strengthening

• Rollout of DTG further reduces the benefits of routine HIV DR testing in the general population

• Resources can likely best be used by improving VL monitoring
Thank You

CEPAC-International Research Team

Brazil
Beatriz Grinsztejn, MD
Paula Luz, PhD
Claudio Struchiner, PhD
Valdilea Veloso, MD

Côte d’Ivoire
Xavier Anglaret, MD, PhD
Christine Danel, MD
Serge Eholie, MD, PhD
Eugène Messou, MD
Eric Ouattara, MD, MPH

South Africa
Linda-Gail Bekker, MD, PhD
Neil Martinson, MBBCh MPH
Robin Wood, MBBCh, Mmed

France
Delphine Gabillard, PhD
Guillaume Mabileau, MSc
Yazdan Yazdanpanah, MD, PhD

India
Nagalingswaran Kumarasamy, MBBS
Nomita Chandhiok, MD

Zimbabwe
Barbara Engelsman, MD
Angela Mushavi, MD
Karen Webb, PhD

South Africa
Linda-Gail Bekker, MD, PhD
Neil Martinson, MBBCh MPH
Robin Wood, MBBCh, Mmed

United States
Audrey Bangs
Ingrid Bassett, MD, MPH
Bridget Bunda
Angrea Ciaramello, MD, MPH
Sydney Costantini
Caitlin Dugdale, MD
Julia Foote
Kenneth Freedberg, MD, MSc

India
Nagalingswaran Kumarasamy, MBBS
Nomita Chandhiok, MD

Zimbabwe
Barbara Engelsman, MD
Angela Mushavi, MD
Karen Webb, PhD

South Africa
Linda-Gail Bekker, MD, PhD
Neil Martinson, MBBCh MPH
Robin Wood, MBBCh, Mmed

United States
Audrey Bangs
Ingrid Bassett, MD, MPH
Bridget Bunda
Angrea Ciaramello, MD, MPH
Sydney Costantini
Caitlin Dugdale, MD
Julia Foote
Kenneth Freedberg, MD, MSc

Supported by:
National Heart, Lung, and Blood Institute (K01HL123349)
National Institute of Allergy and Infectious Disease (R01AI042006, R37AI093269)
SUPPLEMENTARY SLIDES
WHO regimen guidelines (July 2018)

1st Line
- EFV + 2 NRTI
- DTG + 2 NRTI

2nd Line
- DTG + 2 NRTI
- PI + 2 NRTI

3rd Line
- DTG (BID) + DRV/r (BID) + 1-2 NRTI

Start/switch regimen

Re-start regimen

INSTI genotype?

TLE Failure: HIV DR Testing

- NNRTI-R 1st-line ART
- Suppressed 1st-line ART
- Failing 1st-line ART
- Suppressed 2nd-line ART
TLD Failure: No HIV DR Testing

- INSTI-R 1st-line ART
- Suppressed 1st-line ART
- Failing 1st-line ART
- Suppressed 2nd-line ART
TLD Failure: HIV DR Testing

- INSTI-R 1st-line ART
- Suppressed 1st-line ART
- Failing 1st-line ART
- Suppressed 2nd-line ART
TLD Failure: HIV DR Testing
Clinical Decision-Making

<table>
<thead>
<tr>
<th>ART Initiation</th>
<th>ART Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLE</td>
<td>TLD</td>
</tr>
<tr>
<td>TLD</td>
<td>?</td>
</tr>
</tbody>
</table>

** NRTI resistance pattern used to determine NRTI pair
Data Are on the Horizon

Inclusion criteria: patients failing NNRTI + 2NRTI

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAWNING</td>
<td>DTG vs LPV/r</td>
<td>Awaiting final data</td>
</tr>
<tr>
<td>D2EFT</td>
<td>DRV/r + 2NRTI, DTG + TDF/XTC, DRV/r + DTG</td>
<td>Enrolling</td>
</tr>
<tr>
<td>NADIA</td>
<td>DTG vs DRV/r + TDF/XTC vs AZT/3TC</td>
<td>Protocol finalization</td>
</tr>
</tbody>
</table>

Adapted from ClinicalTrials.gov
VL Monitoring is Essential

- Among PWH who have close follow-up with VL testing to assess response to ART, HIV DR testing
 - Reduce transmissions
 - Prompt adherence counseling
 - Trigger resistance testing or empiric ART switch
Clinical benefits of HIV DR testing

• Pretest probability of resistance:
 – Prevalence of pretreatment drug resistance
 – Likelihood of developing acquired drug resistance
 • Genetic barrier to resistance
 • Tolerability of regimens (adherence)
 • Frequency of stockouts

• Selection of optimal ART regimen
 – Depending on HIV DR test result