PhyloPi: an affordable, purpose built phylogenetic pipeline for the HIV drug resistance testing facility

PA Bester,
A De Vries,
SJPK Riekert,
K Steegen,
G Van Zyl,
D Goedhals
INTRODUCTION
From specimen to sequence

Nucleic acid extraction → cDNA synthesis → 1st Round PCR → Nested PCR

Sequencing → PCR cleanup

T: +27(0)51 401 9111 | info@ufs.ac.za | www.ufs.ac.za
The n steps of phylogenetic inference

- Multiple sequence alignment
- Curation of multiple sequence alignment
 - Overhangs, gaps, missalignments
 - Programmatically or human
- Maximum likelihood calculation
- Tree rendering
PhyloPi: A block diagram

Software Used:
Well cited
Opensource
API or CLI

![Block Diagram of PhyloPi](image)
Phylopi: The hardware

- Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB LPDDR2 SDRAM
- 2.4GHz and 5GHz IEEE 802.11 b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
- Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
- Extended 40-pin GPIO header
- Full-size HDMI
- 4 USB 2.0 ports
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- 4-pole stereo output and composite video port
- Micro SD port for loading your operating system and storing data
- 5V/2.5A DC power input
- Power-over-Ethernet (PoE) support (requires separate PoE HAT)
PhyloPi: Considerations for software

- Opensource
 - Source code available for compilation
- CLI or API
- Well cited
 - High quality
- Light footprint yet accurate
PhyloPi: Initial setup
PhyloPi: Routine phylogenetics
PhyloPi: Results
Phylopi: Sanity check
Phylopi: Sanity check
Phylopi: Sanity check

Sanity check on your data

Fasta File: Browse... No file selected.

This is a crude test to determine whether your data is suitable for phylogenetics.

Each sequence in your fasta file will be aligned to references and be displayed graphically.
Phylopi: Sanity check

UFS UV

© Copyright reserved Kopiereg voorbehou
Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy

Hiromi Imamichia, Robin L. Dewarb, Joseph W. Adelsbergerb, Catherine A. Rehma, Una O’Dohertyc, Ellen E. Paxinosd, Anthony S. Faucia,1, and H. Clifford Lanea

aLaboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; bClinical Services Program, Applied and Development Research Directorate, Leidos Biomedical Research, Inc., Frederick, MD 21072; cDepartment of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and dApplications and Collaborations, Pacific Biosciences, Menlo Park, CA 94025

Contributed by Anthony S. Fauci, June 9, 2016 (sent for review April 23, 2016; reviewed by Scott Hammer and Nelson L. Michael)

Despite years of plasma HIV-RNA levels <40 copies per milliliter during combination antiretroviral therapy (cART), the majority of HIV-infected patients exhibit persistent seropositivity to HIV-1 and evidence of immune activation. These patients also show persistence of proviruses of HIV-1 in circulating peripheral blood mononuclear cells. Many of these proviruses have been characterized as defective and thus thought to contribute little to HIV-1 pathogenesis. By combining 5’LTR-to-3’LTR single-genome amplification and direct amplicon sequencing, we have identified the presence of “defective” proviruses capable of transcribing novel unspliced HIV-RNA (usHIV-RNA) species in patients at all stages of HIV-1 infection. Although these novel usHIV-RNA transcripts amplification of up to 8.9 kb HIV-1 DNA and 8.4 kb cell-associated unspliced HIV-RNA (usHIV-RNA), and sequencing of the resulting near full-length HIV-1 genome fragments. This approach allowed us to better characterize the genetic variability in HIV-1 proviral genomes and to determine which “defective” proviruses were transcribed and capable of encoding viral proteins.

Results
Characterization of HIV-1 Proviruses in Patients with HIV-1 Infection. The 5’LTR-to-3’LTR single genome amplification and direct amplicon sequencing of HIV-1 proviruses was performed for
Phylopi: Search features

Search the master fasta file for samples
Type your sample IDs in the box below, if more than one use commas

Search previous results
Name | Primary sample | Secondary sample
If all fields are left empty, all previous results will be retrieved

Search
Return to input
Phylopi: Flexing its muscle ...

```
hiv.lang.gov
POL CDS (11 337)
>______________________
>______________________
>______________________
>______________________
>______________________
>______________________
>______________________

n = 1
while n <= 50:
    select n random sequences using PhyloPi WI upload
    n += 1
```
N sequences retrieved by BLAST

Time used by BLAST vs. N input sequences

Time used by MAFFT vs. total sequences

Time used by FastTree vs. total sequences

\[y = 4.628x \]
\[R^2 = 0.998 \]

\[y = 11.02x \]
\[R^2 = 1 \]

\[y = 0.153x^{1.87} \]
\[R^2 = 0.993 \]
N sequences retrieved by BLAST

Time used by BLAST vs. N input sequences

\[y = 4.628x \]
\[R^2 = 0.998 \]

Time used by MAFFT vs. total sequences

\[y = 11.02x \]
\[R^2 = 1 \]

Time used by FastTree vs. total sequences

\[y = 0.652x \]
\[R^2 = 0.993 \]
N sequences retrieved by BLAST

Time used by BLAST vs. N input sequences

Time used by MAFFT vs. total sequences

Time used by FastTree vs. total sequences

Time used by MAFFFT vs. total sequences

Time used by FastTree vs. total sequences
N sequences retrieved by BLAST

Time used by BLAST vs. N input sequences

Time used by MAFFT vs. total sequences

Time used by FastTree vs. total sequences
N sequences retrieved by BLAST

Time used by BLAST vs. N input sequences

Only MAFFT: O(N^2)
A note on FastTree:

gcc -DUSE_DOUBLE -O3 -finline-functions -funroll-loops -Wall -o FastTree FastTree.c -lm
N sequences retrieved by BLAST

Time used by BLAST vs. N input sequences

Time used by MAFFT vs. total sequences

Time used by FastTree vs. total sequences
Choosing colours: Intra- and inter distances ...

<table>
<thead>
<tr>
<th></th>
<th>Inter sequences</th>
<th>Intra clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtype B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR_RT</td>
<td>1969</td>
<td>359</td>
</tr>
<tr>
<td>INT</td>
<td>2461</td>
<td>405</td>
</tr>
<tr>
<td>Subtype C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR_RT</td>
<td>1753</td>
<td>255</td>
</tr>
<tr>
<td>INT</td>
<td>1171</td>
<td>217</td>
</tr>
</tbody>
</table>
...
PhyloPi: Utility

• PhyloPi beats transcription errors
 – Names, DOB
• PhyloPi beats transcription errors
 – Names, DOB
• Patients may use different first names
• PhyloPi beats transcription errors
 – Names, DOB
• Patients may use different first names
• Patients may marry and change their surname
• PhyloPi beats transcription errors
 – Names, DOB
• Patients may use different first names
• Patients may marry and change their surname
• PhyloPi sees vertical / horizontal transmission
• PhyloPi beats transcription errors
 – Names, DOB
• Patients may use different first names
• Patients may marry and change their surname
• PhyloPi sees vertical transmission
 – We are not convicting a dentist
• PhyloPi beats transcription errors
 – Names, DOB
• Patients may use different first names
• Patients may marry and change their surname
• PhyloPi sees vertical
 – We are not convicting a dentist
• PhyloPi has found patient/folder mixups in clinics
 – We have been accused of sorcery
Conclusion

• The software is free, the hardware is cheap
 – $35.00
• Portable and standalone
 – WiFi hotspot, self contained
• Fast, but accurate
• A safety net
• Human insight still required
The grey matter which mattered
Chat with us:
Poster session
Thank You

Dankie